Coding and Information Theory Overview

Chapter 1: Source Coding

Xuejun Liang

The second Lecture of Chapter 1

Quick Review (1)

- The source alphabet of $S=\left\{s_{1}, s_{2}, \ldots, s_{q}\right\}$
- Probability distribution $P=\left(p_{1}, p_{2}, \ldots, p_{q}\right)$
- Code alphabet $T=\left\{t_{1}, \ldots, t_{r}\right\}$
- Code word: a sequence of symbols from T
- Encode source $s=X_{1} X_{2} X_{3} \ldots$, where $X_{n}=s_{i}$
- Source code (simply code) $C=\left\{w_{1}, w_{2}, \ldots, w_{q}\right\}$
- The average word-length of C is

$$
L(\mathcal{C})=\sum_{i=1}^{q} p_{i} l_{i} . \quad \text { where } l_{i}=\left|w_{i}\right|
$$

Quick Review (2)

- A uniquely decodable code C
- Compute C_{n} and C_{∞}

Algorithm to compute C1, C2, ..., Cn_1, Cn

$$
\mathrm{CO}=\mathrm{C}
$$

For each code-word cw in C
For each code cw_1 in Cn_1
If $\mathrm{cw} _1$ is prefix of cw , then add $\mathrm{cw} / \mathrm{cw} _1$ in Cn
If cw is prefix of $\mathrm{cw} _1$, then add $\mathrm{cw} _1 / \mathrm{cw}$ in Cn

- The Sardinas-Patterson Theorem (Theorem 1.10)
- A code C (finite) is uniquely decodable if and only if $C \cap C_{\infty}=\emptyset$

Example 1.12

- Let C be the ternary code $\{01,1,2,210\}$.
- $C 1=\{10\}$
- $C 2=\{0\}$
- $\mathrm{C} 3=\{1\}$
- Now $1 \in C \cap C_{\infty}$. So C is not uniquely decodable

$-10 \in C 1$	because $\mathbf{2 . 1 0 = 2 1 0 ,}$	with $2 \in C$ and $210 \in C$
$-0 \in C 2$	because $\mathbf{1 . 0 = 1 0 ,}$	with $1 \in C$ and $10 \in C 1$
$-1 \in C 3$	because $\mathbf{0 . 1}=\mathbf{0 1 ,}$	with $0 \in C 2$ and $01 \in C$

Example 1.12 (Cont.)

- Let C be the ternary code $\{01,1,2,210\}$.
- $\mathrm{C} 1=\{10\} \quad$ because $\mathbf{2 . 1 0}=\mathbf{2 1 0}, \quad$ with $2 \in \mathrm{C}$ and $210 \in \mathrm{C}$
- $C 2=\{0\} \quad$ because $1.0=10, \quad$ with $1 \in C$ and $10 \in C 1$
- $\mathrm{C} 3=\{1\} \quad$ because $0.1=01, \quad$ with $0 \in \mathrm{C} 2$ and $01 \in \mathrm{C}$
- Now $1 \in C \cap C_{\infty}$. So C is not uniquely decodable
- Can you find an example of non-unique decodability?

Proof of Theorem 1.10

A code C (finite) is uniquely decodable if and only if $C \cap C_{\infty}=\varnothing$

- (\Rightarrow) Suppose that $C \cap C_{\infty} \neq \emptyset$, want to prove C is not u.d.
- (\Leftarrow) Suppose that the code C is not u.d., want to prove $C \cap C_{\infty} \neq \emptyset$

1.3 Instantaneous Codes

- Example 1.14
- Consider the binary code C given by

$$
s_{1} \mapsto 0, s_{2} \mapsto 01, s_{3} \mapsto 11
$$

- We have $\mathcal{C}_{1}=\mathcal{C}_{2}=\cdots=\{1\}$, so $\mathcal{C}_{\infty}=\{1\} ;$
- Thus $\mathcal{C} \cap \mathcal{C}_{\infty}=\emptyset$, so C is uniquely decodable
- Consider a finite message $t=0111$...
- We can not decode until we know how many 1's.
- We say that C is not instantaneous.

Instantaneous Codes (cont.)

- Example 1.16
- Consider the binary code D given by

$$
s_{1} \mapsto 0, s_{2} \mapsto 10, s_{3} \mapsto 11
$$

- the reverse of the code C in Example 1.14
- this is uniquely decodable
- It is also instantaneous
- Formal definition
- A code C is instantaneous if, for ebach sequence of codewords $w_{i_{1}} w_{i_{2}}, \ldots w_{i_{n}}$, every code-sequence beginning $t=$ $w_{i_{1}} w_{i_{2}}, \ldots w_{i_{n}} \ldots$ is decoded uniquely as $s=s_{i_{1}} s_{i_{2}} \ldots s_{i_{n}} \ldots$, no matter what the subsequent symbols in t are.

Prefix Code

- A code C is a prefix code if no code-word w_{i} is a prefix (initial segment) of any code-word $w_{j}(i \neq j)$; equivalently, $w_{j} \neq w_{i} w$ for any $w \in T^{*}$,
- That is, $C_{1}=\varnothing$
- Theorem 1.17
- A code C is instantaneous if and only if it is a prefix code.
(\Rightarrow) If not prefix, then not instantaneous
(\Leftrightarrow) If prefix, then instantaneous
- Note: A code C is instantaneous, if
$-t=w_{i_{1}} w_{i_{2}}, \ldots w_{i_{n}} \ldots$ is decoded uniquely as
$-s=s_{i_{1}} S_{i_{2}} \ldots S_{i_{n}} \cdots$,

1.4 Constructing Instantaneous Codes

- $w \in T^{*}$
- $T=\left\{t_{1}, t_{2}, . ., t_{r}\right\}$

$$
\begin{array}{llll}
w t_{1} & w t_{2} & \ldots \ldots & w t_{r}
\end{array}
$$

Constructing Instantaneous Codes (Cont.)

- A code C can be regarded as a finite set of vertices of the tree T^{*}.
- A word w_{i} is a prefix of w_{j} if and only if the vertex w_{i} is dominated by the vertex w_{j}
- that is, there is an upward path in T^{*} from w_{i} to w_{j}
- C is instantaneous if and only if no vertex $w_{i} \in C$ is dominated by a vertex $w_{j} \in C(i \neq j)$.

Example 1.18

- Let us find an instantaneous binary code C for a source S with five symbols s_{1}, \ldots, s_{5}.

Example 1.19

- Is there an instantaneous binary code for this source S with wordlengths 1, 2, 3, 3, 4?
- No, Why?

- Is there an instantaneous ternary code for this source S with wordlengths 1, 2, 3, 3, 4?
- Yes. Why?

Example 1.19

- Is there an instantaneous binary code for this source S with wordlengths 1, 2, 3, 3, 4?
- No, Why?
- Is there an instantaneous ternary code for this
source S with wordlengths 1, 2, 3, 3, 4?
- Yes. Why?

