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Overview

• Information Theory and Coding Theory are 
two related aspects of the problem of how to 
transmit information efficiently and accurately 
from a source, through a channel, to a 
receiver.

• Based on Mathematics areas:

– Probability Theory and Algebra

– Combinatorics and Algebraic Geometry



Important Problems

• How to compress information, in order to 
transmit it rapidly or store it economically

• How to detect and correct errors in 
information



Information Theory vs. Coding Theory 

• Information Theory uses probability distributions 
to quantify information (through the entropy 
function) , and to relate it to the average word-
lengths of encodings of that information
– In particular, Shannon's Fundamental Theorem 

Guarantees the existence of good error-correcting 
codes (ECCs)

• Coding Theory is to use mathematical techniques 
to construct ECCs, and to provide effective 
algorithms with which to use ECCs.



Chapter 1: Source Coding

1.1 Definitions and Examples 

1.2 Uniquely Decodable Codes 

1.3 Instantaneous Codes 

1.4 Constructing Instantaneous Codes

1.5 Kraft's Inequality

1.6 McMillan's Inequality

1.7 Comments on Kraft's and McMillan's Inequalities



1.1 Definitions and Examples 

• A sequence 𝑠 = 𝑋1𝑋2𝑋3… of symbols 𝑋𝑛, emitting 
comes from a source 𝑆

• The source alphabet of 𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑞}

• Consider 𝑋𝑛 as random variables and assume that

– they are independent and  

– have the same probability distribution 𝑝𝑖.



Examples

• Example 1.1
– 𝑆 is an unbiased die, 𝑆 = {1, . . . , 6} with 𝑞 = 6, 𝑋𝑛 is the 

outcome of the 𝑛-th throw, and 𝑝𝑖 = Τ1 6.

• Example 1.2
– 𝑆 is the weather at a particular place, with 𝑋𝑛 representing 

the weather on day 𝑛, 𝑆 = {good, moderate, bad}. 

• Example 1.3
– 𝑆 is a book, 𝑆 consists of all the symbols used, 𝑋𝑛 is the 𝑛-

th symbol in the book, and 𝑝𝑖 is the frequency of the 𝑖-th
symbol in the source alphabet.



Code alphabet, symbol, word

• Code alphabet 𝑇 = {𝑡1, … , 𝑡𝑟} consisting of 𝑟 code-
symbols 𝑡𝑗.

– Depends on the technology of the channel

– Call 𝑟 the radix (meaning "root“ or “base”)

– Refer to the code as an 𝑟-ary code

– When 𝑟 = 2, binary code, 𝑇 = 𝑍2 = {0, 1}

– When 𝑟 = 3, ternary code, 𝑇 = 𝑍3 = {0, 1, 2} 

• Code word: a sequence of symbols from 𝑇



Encode and Example

• To encode 𝑠 = 𝑋1𝑋2𝑋3…, we represent 𝑋𝑛 = 𝑠𝑖 by 
– 𝑠𝑖→ 𝑤𝑖 (its code word)

– 𝑠 → 𝑡 (one by one)

– we do not separate the code-words in 𝑡

• Example 1.4
– If 𝑆 is an unbiased die, as in Example 1.1, take 𝑇 = 𝑍2 and 

let 𝑤𝑖 be the binary representation of the source-symbol 𝑠𝑖
• 𝑠𝑖 = 𝑖 (𝑖 = 1, . . . ,6)

• 𝑤1 = 1,𝑤2 = 10,𝑤3 = 11, 𝑤4 = 100, 𝑤5 = 101, 𝑤6 = 110

– 𝑠 = 53214 → 𝑡 =10111101100

– Could write 𝑡 = 101.11.10.1.100 for clearer exposition



Define codes more precisely

• A word 𝑤 in 𝑇 is a finite sequence of symbols from 𝑇, 
its length 𝑤 is the number of symbols.

• The set of all words in 𝑇 is denoted by 𝑇*, including 
empty word ɛ.

• The set of all non-empty words in 𝑇 is denoted by 𝑇+



Define codes more precisely (Cont.)

• A source code (simply a code) 𝐶 is a function 𝑆→ 𝑇+

• Regard 𝐶 as a finite set of words 𝑤1, 𝑤2, …, 𝑤q in 𝑇+.

• 𝐶 can be extended to a function 𝑆* → 𝑇*

• The image of this function is the set

• The average word-length of 𝐶 is

– 𝑤ℎ𝑒𝑟𝑒 𝑙𝑖 = 𝑤𝑖

, 𝑖 = 1, 2, … , 𝑞



Example 1.5

• Recall Example 1.4 
– Source symbols:

• 𝑠1 = 1, 𝑠2 = 2, 𝑠3 = 3, 𝑠4 = 4, 𝑠5 = 5, 𝑠6 = 6

– Probability distribution

• 𝑝1 =
1

6
, 𝑝2 =

1

6
, 𝑝3 =

1

6
, 𝑝4 =

1

6
, 𝑝5 =

1

6
, 𝑝6 =

1

6

– Code words:
• 𝑤1 = 1,𝑤2 = 10,𝑤3 = 11, 𝑤4 = 100, 𝑤5 = 101, 𝑤6 = 110

– Word lengths
• 𝑙1 = 1, 𝑙2 = 𝑙3 = 2 and 𝑙4 = 𝑙5 = 𝑙6 = 3

• So, average word length



The aim is to construct codes 𝐶

a) there is easy and unambiguous decoding 𝑡 -> 𝑠 ,

b) the average word-length 𝐿(𝐶) is small.

• The rest of this chapter considers criterion (a) , and the 
next chapter considers (b). 



1.2 Uniquely Decodable Codes

• A code 𝐶 is uniquely decodable (u.d. for short) if each 𝑡
∈ 𝑇* corresponds under 𝐶 to at most one 𝑠 ∈ 𝑆*; 

– in other words, the function 𝐶 : 𝑆* → 𝑇* is one-to-one, 

• Will always assume that the code-words 𝑤i in 𝐶 are 
distinct. 

– Under this assumption, the definition of unique 
decodability of 𝐶 is that whenever 



Example 1.6

• In Example 1.4, the binary coding of a die is not uniquely 
decodable.

• Give an example.

• Can you fix it?



Theorem 1.7

• If the code-words 𝑤i in 𝐶 all have the same length, then 𝐶 is 
uniquely decodable.
– If all the code-words in 𝐶 have the same length 𝑙, we call 𝐶 a block 

code of length 𝒍.



Example: Uniquely Decodable 
But Not Block Code

• Example 1.8

– The binary code 𝐶 given by

– has variable lengths, but is still uniquely decodable.

– for example, 



Definition of 𝐶𝑛 and 𝐶∞

• We define

–

–

– Note:  

• For each 𝑛 ≥ 1; we then define

– Note: 



Example 1.9: Compute 𝐶𝑛 and 𝐶∞

• Let 𝐶={0, 01, 011} as in Example 1.8. Then

• ?               ?               ?                                          ?



Algorithm to compute Cn

• Notation 

– Let A = “12”, B = “3xyz”, and C = AB, Then C = “123xyz”

– A is a prefix of C and B is a postfix of C

– Notation C/A denotes B

• Algorithm to compute C1, C2, …, Cn_1, Cn

C0 = C

For each code-word cw in C

For each code cw_1 in Cn_1

If cw_1 is prefix of cw, then add cw/cw_1 in Cn

If cw is prefix of cw_1, then add cw_1/cw in Cn



The Sardinas-Patterson Theorem

• Theorem 1.10 (The Sardinas-Patterson Theorem)

– A code 𝐶 (finite) is uniquely decodable if and only if the 
sets 𝐶 and 𝐶∞ are disjoint. (𝐶 ∩ 𝐶∞ = ∅)

– A code 𝐶 (finite or infinite) is uniquely decodable if and 
only if 𝐶 ∩ 𝐶∞ = ∅ and 𝐶𝑛 = ∅ for some 𝑛 ≥ 1.

• Example 1.11

– If 𝐶 = {0, 01, 011} as in Examples 1.8 and 1.9,             

– Then              {1, 11} which is disjoint from C.



Example 1.12

• Let 𝐶 be the ternary code {01, 1, 2, 210}. 

– Then 𝐶1 = {10}, 𝐶2 = {0} and 𝐶3 = {1}, so 1 ∈ 𝐶 ∩ 𝐶∞ and 

– thus 𝐶 is not uniquely decodable.

• Can you find an example of non-unique decodability?
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