CS 4450

Coding and Information Theory

Mathematical Fundamentals (A)

Dr. Xuejun Liang

Mathematical Fundamentals

1. Modular Arithmetic
2. Group and Examples
3. Field and Examples
4. Extension Field
5. Linear (Vector) Space
6. Matrix and Groups of Linear Equations

Modular Arithmetic

Definition 1: Suppose a and b are integers, and m is positive integer. Then we write $a \equiv b(\bmod m)$ if m divides $b-a$.

- $a \equiv b \bmod m$ if and only if ($a-b$) = $k \times m$ for some k
- Z_{m} the equivalence class under mod m
- Canonical form $Z_{m}=\{0,1,2, \ldots, m-1\}$, we use the positive remainder as the standard representation.
- $-\mathrm{a} \bmod \mathrm{m}=\mathrm{m}-(\mathrm{a} \bmod \mathrm{m})$

Modulo-7 Addition in Z_{7}

$[+]$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
0	0	$\mathbf{1}$	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

$$
5+13 \equiv 5+1 \equiv 6 \bmod 12
$$

$5 \times 13 \equiv 5 \times 1 \equiv 5 \bmod 12$

Group

Definition 2: A set G on which a binary operation * is defined is called a group if the following conditions are satisfied:

1. The binary operation * is associative.
2. G contains an element e, called an identity element on G, such that, for any a in G

$$
a^{*} e=e^{*} a=a
$$

3. For any element a in G , there exists another element a ', called an inverse of a in G, such that

$$
a^{*} a^{\prime}=a^{\prime} * a=e
$$

A group G is said to be commutative if its binary operation * satisfies the following condition: For any a and b in G,

$$
a^{*} b=b^{*} a
$$

Two important properties of groups:

1. The inverse of a group element is unique.
2. The identity element in a group G is unique.

Group examples

- $\left(Z_{2},+, 0\right)$ is a group

$$
\text { - }\left(\mathrm{Z}_{7},+, 0\right) \text { is a group }
$$

$[+]$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

Order of Group: The number of elements in a group is known as the order of the group

- $\left(Z_{m},+, 0\right)$ is a group
- + is closed
- Associative: $(\mathrm{a}+\mathrm{b})+\mathrm{c}=\mathrm{a}+(\mathrm{b}+\mathrm{c})$
- Commutative: $\mathrm{a}+\mathrm{b}=\mathrm{b}+\mathrm{a}$ (abelian group)
- 0 is the identity for $+: a+0=a+0=a$
- Additive inverse: $(-a)+a=a+(-a)=0$

Group examples

Let p be a prime (e.g., $p=2,3,5,7,11,13,17, \ldots$). Then ($2 p-\{0\}, \times, 1$) $=(\{1,2, \ldots, p-1\}, \times, 1)$ is a multiplicative (modulo-p) group.

Proof: Let $a \in Z_{p}-\{0\}$, Since $a<p$ and p is a prime, a and p must be relatively prime. By Euclidean theorem, there exist two integers i and j such that

$$
i \cdot a+j \cdot p=1 \quad \mathrm{i} \cdot \mathrm{a}=-\mathrm{j} \cdot \mathrm{p}+1=1(\bmod \mathrm{p}) \quad \Longrightarrow \mathrm{a}^{-1}=\mathrm{i}(\bmod \mathrm{p})
$$

- $\left(Z_{7}-\{0\}, \times, 1\right)$ is a group

$[\cdot]$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

Field

- A set F is a Field
- At least two elements $0,1 \in F$
- Two operations + and \times on F
- Associative and commutative
- Operation \times distributes over +
- 0 is the identity for + and 1 for \times
- Additive inverse and multiplicative inverse

Order of Field: The number of elements in a field is known as the order of the field. A field having finite number of elements is called a finite field.

Property 1: For every element a in a field, $a \times 0=0 \times a=0$.
Property 2: For any two nonzero elements a and b in a field, $a \times b \neq 0$.
Property 3: For $a \neq 0, a \times b=a \times c$ implies that $b=c$.

Finite Field Examples

$$
\left(Z_{7},+, \times, 0,1\right) \text { is a Field }
$$

Example:
Evaluate $((2-4) \times 4) / 3$ in the field Z_{7}

$[+]$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
0	0	$\mathbf{1}$	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

$[\cdot]$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

- $\left(\mathrm{Z}_{\mathrm{p}},+, \times, 0,1\right)$ is a Field (when p is a prime number.)
,$-+ \times$ are closed
,$-+ \times$ are associative and commutative
- Operation \times distributes over +
- 0 is the identity for + and 1 for \times
- Additive inverse and multiplicative inverse

