Coding and Information Theory Chapter 7: Linear Codes - D Xuejun Liang 2022 Fall

Chapter 7: Linear Codes

- 1. Matrix Description of Linear Codes
- 2. Equivalence of Linear Codes
- 3. Minimum Distance of Linear Codes
- 4. The Hamming Codes
- 5. The Golay Codes
- 6. The Standard Array
- 7. Syndrome Decoding

Quick Review of Last Lecture

- Equivalence of Linear Codes
 - The definition of equivalence of linear codes C_1 and C_2
 - Generator matrix in systematic form $G = (I_k | P)$
 - Parity-check matrix in systematic form $H = (-P^T | I_{n-k})$
 - The Singleton Bound $d \leq 1+n-k$
 - Examples
- Minimum Distance of Linear Codes
 - The *d* is the minimum number of linearly dependent columns of parity-check matrix *H*.
 - Meaning of linearly dependent of columns of *H*
 - Examples

Minimum Distance of Linear Codes

• Corollary 7.31

There is a *t*-error-correcting linear [n, k]-code over *F* if and only if there is an $(n - k) \times n$ matrix *H* over *F*, of rank n - k, with every set of 2*t* columns linearly independent.

• Proof:

(⇒)

Given such a code C, let H be a parity-check matrix for C,

So *H* has *n* columns and n - k independent rows.

By Theorem 6.10, *C* has minimum distance $d \ge 2t + 1$.

By Theorem 7.27, every set of at most d-1 columns are linearly independent

So every set of 2*t* columns are linearly independent

• Corollary 7.31

There is a *t*-error-correcting linear [n, k]-code over *F* if and only if there is an $(n - k) \times n$ matrix *H* over *F*, of rank n - k, with every set of 2*t* columns linearly independent.

• Proof:

(⇐)

Given such a matrix *H*

let $\mathcal{V} = F^n$ and let $\mathcal{C} = \{\mathbf{v} \in \mathcal{V} \mid \mathbf{v}H^T = \mathbf{0}\}$

Since *H* has rank n - k, its n - k rows are linearly independent

So *C* has dimension *k*

By hypothesis, every set of linearly dependent columns of H contains at least 2t + 1 columns

So Theorem 7.27 implies that C has minimum distance $d \ge 2t + 1$

Hence *C* corrects *t* errors by Theorem 6.10.

7.4 The Hamming Codes

$$\sum_{i=0}^{t} \binom{n}{i} (q-1)^{i} \le q^{n-k}$$

 For a 1-error-correcting binary linear code, put t = 1 and q = 2 in the sphere-packing bound (Corollary 6.17), so the condition for a perfect code becomes

$$2^{n-k} = 1 + \binom{n}{1} = 1 + n$$

 Let c = n - k (the number of check digits), then this condition is equivalent to

$$n = 2^c - 1. (7.4)$$

• So

$$c =$$
12345... $n =$ 1371531... $k =$ 0141126...

The Hamming Codes (Cont.)

Construct codes with these parameters on $F_2 = \{0,1\}$

- By Corollary 7.31, need to construct a c x n matrix H over F₂, of rank c, with every pair of columns linearly independent (non-zero and distinct).
- Columns of H must consist of all 2^c 1 non-zero binary vectors of length c, in some order.
- This matrix H has rank of c. Use it as the parity-check matrix, we have a code C with these parameters. This code is called the **binary Hamming code** H_n of length n = 2^c 1.

- Example 7.32
 - H_3 has the parity checking matrix $H = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$

• *H*₃ is *R*₃ !!!

• Note: The rate of H_n will approaches to 1.

$$R=\frac{k}{n}=\frac{2^c-1-c}{2^c-1}\to 1$$

- Nearest neighbor decoding with H_n
 - The receiver computes $s = vH^T$,
 - Called the syndrome of v.
 - If s = 0, the receiver decodes v as $\Delta(v) = v$, and
 - if $s = c_i^T$ (the *i*-th column of H) then $\Delta(v) = v e_i$.

Nearest Neighbor Decoding

- Example 7.33
 - Let us use H_7 , with parity-check matrix

$$H = \begin{pmatrix} 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$
$$v = (1 \quad 1 \quad 0 \quad 1 \quad 1 \quad 0 \quad 1)$$

- Suppose that u = 1101001 is sent, and v = 1101101 is received, so the error-pattern is e = e₅.
- The syndrome is $s = vH^T = 100$, which is the transpose c_5^T of the fifth column of H.
- This indicates an error in the fifth position, so changing this entry of v we get $\Delta(v) = 1101001 = u$

 Using the parity checking matrix as below, then a nonzero syndrome is the binary representation of the position *i* where a single error *e*, has appeared

$$H = \begin{pmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}$$
$$1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7$$

- Example 7.34
 - Verify this using example 7.33

<i>u</i> = 1101001	$H = \begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix}$	0	0	1	1	1	1
4404404	$H = \begin{bmatrix} 0 \end{bmatrix}$	1	1	0	0	1	1
v = 1101101	$\backslash 1$	0	1	0	1	0	1/
$s = v H^T = 101$	<i>v</i> = (1	1	0	1	1	0	1)
$\Delta(v) = 1101001 = u$							

 Note: need to perform a column permutation (1362547) to change between the two representations. Construction of perfect 1-error-correcting linear codes for prime-powers q > 2

• We take the columns of *H* to be

$$n = \frac{q^{c} - 1}{q - 1} = 1 + q + q^{2} + \dots + q^{c - 1} \qquad \sum_{i=0}^{t} \binom{n}{i} (q - 1)^{i} \le q^{n - k}$$

pairwise linearly independent vectors of length c over F_q .

- The resulting linear code has length n, dimension k = n c, and minimum distance d = 3, so t = 1.
- As in the binary case, $R \to 1$ as $c \to \infty$, but $\Pr_{E} \neq 0$.

Construction of perfect 1-error-correcting linear codes for prime-powers q > 2

- Example 7.35
 - If *q* = 3 and *c* = 2, then *n* = 4 and *k* = 2.
 - We can take

$$H = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{pmatrix}$$

• The solutions of the simultaneous linear equations $vH^T = 0$

will give a perfect 1-error-correcting linear [4, 2]-code over F_3

$$n = \frac{q^{c} - 1}{q - 1} = 1 + q + q^{2} + \dots + q^{c - 1}$$

7.5 The Golay Codes

• Skip this section

7.6 The Standard Array

- Suppose C ⊆ V is a linear code. The standard array of C is essentially a table in which the elements of V are arranged into cosets of the subspace C.
- Suppose that $C = {\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_M}$ is a linear code with $M = q^k$ elements. Assume $u_1 = 0$.
- For $i = 1, ..., q^{n-k} 1$, let the *i*-th row consist of the elements of the coset of *C*.

 $\mathbf{v}_i + \mathcal{C} = \{\mathbf{v}_i + \mathbf{u}_1 \ (= \mathbf{v}_i), \ \mathbf{v}_i + \mathbf{u}_2, \ \dots, \ \mathbf{v}_i + \mathbf{u}_M\}$

where $wt(v_i) \le wt(v_{i+1})$, $i = 1, ..., q^{n-k} - 1$ and v_i is not in the previous (< *i*) rows.

• A horizontal line across the array, immediately under the last row to satisfy $wt(v_i) \le t$, where $t = \lfloor (d-1)/2 \rfloor$.

- Example 7.39
 - Let C be the binary repetition code R₄ of length n = 4, so q = 2, k = 1 and the code-words are

 $\boldsymbol{u_1}$ = **0** = 0000 and $\boldsymbol{u_2}$ = **1** = 1111

- There are $q^{n-k} = 8$ cosets of C in V, each with two vectors
- So, standard array has 8 rows: $v_1 + C, v_2 + C, ..., v_8 + C$ $v_1 = has weight 0$ $v_2 to v_5 has weight 1$ $v_6, v_7, v_8 has weight 2$

- $v_1 + C$ 0000 1111
- $v_2 + C$ 1000 0111
- $v_3 + C$ 0100 1011
- $v_4 + C$ 0010 1101
- $v_5 + C$ 0001 1110
- $v_6 + C$ 1100 0011
- $v_7 + C$ 1010 0101
- $v_8 + C$ 1001 0110

• Lemma 7.40

- a) If v is in the j-th column of the standard array (that is, $v = v_i + u_j$ for some i), then u_j is a nearest code-word to v.
- b) If, in addition, v is above the line in the standard array (that is, $wt(v_i) \le t$), then u_j is the unique nearest code-word to v.

u_1	u_2	
0000	1111	

- $v_1 + C$ 0000 1111 u_1
- $v_2 + C$ 1000 0111
- $v_3 + C$ 0100 1011
- $v_4 + C$ 0010 1101 v
- $v_5 + C$ 0001 1110
 - $v_6 + C$ 1100 0011
 - $v_7 + C$ 1010 0101
 - $v_8 + C$ 1001 0110

- The sphere $S_t(u_j)$ of radius t about u_j is the part of the j-th column above the line.
- Thus C is perfect if and only if the entire standard array is above the line

- Decoding rule
 - Suppose that a code-word u ∈ C is transmitted, and v = u + e ∈ V is received, where e is the error-pattern.
 - The receiver finds $v = v_i + u_j$ in the standard array, and decides that $\Delta(v) = u_j$ (u_j is header of a column)
- Note this rule gives correct decoding if and only if the errorpattern is a coset leader ($e = v_i$).

	u ₁ 0000	<i>u</i> ₂ 1111	и
$v_1 + C$	0000	1111	
$v_2 + C$	1000	0111	
$v_3 + C$	0100	1011	
$v_4 + C$	0010	1101	
$v_5 + C$	0001	1110	v
$\overline{v_6 + C}$	1100	0011	
$v_7 + C$	1010	0101	
$v_8 + C$	1001	0110	

Example 7.41

• Let $C = R_4$. Suppose that u = 1111 is sent, and the errorpattern is e = 0100, v = ? And $u_j = ?$

• How about when e = 0110?

• How about when e = 1100?

	u ₁ 0000	<i>u</i> ₂ 1111	и
$v_1 + C$	0000	1111	
$v_2 + C$	1000	0111	
$v_3 + C$	0100	1011	
$v_4 + C$	0010	1101	
$v_5 + C$	0001	1110	
$\overline{v_6 + C}$	1100	0011	
$v_7 + C$	1010	0101	
$v_8 + C$	1001	0110	

7.7 Syndrome Decoding

- If *H* is a parity-check matrix for a linear code $C \subseteq V$ then the syndrome of a vector $v \in V$ is the vector $\mathbf{s} = \mathbf{v}H^{\mathrm{T}} \in F^{n-k}$ (7.8)
- Lemma 7.42
 - Let C be a linear code, with parity-check matrix H, and let $v, v' \in V$ have syndromes s, s'. Then v and v' lie in the same coset of C if and only if s = s'.
- Proof of Lemma 7.42

$$\mathbf{v} + \mathcal{C} = \mathbf{v}' + \mathcal{C} \iff \mathbf{v} - \mathbf{v}' \in \mathcal{C}$$
$$\iff (\mathbf{v} - \mathbf{v}')H^{\mathrm{T}} = \mathbf{0} \qquad \text{(by Lemma 7.10)}$$
$$\iff \mathbf{v}H^{\mathrm{T}} = \mathbf{v}'H^{\mathrm{T}}$$
$$\iff \mathbf{s} = \mathbf{s}'.$$