Coding and Information Theory

 Chapter 7: Linear Codes - DXuejun Liang

2022 Fall

Chapter 7: Linear Codes

1. Matrix Description of Linear Codes
2. Equivalence of Linear Codes
3. Minimum Distance of Linear Codes
4. The Hamming Codes
5. The Golay Codes
6. The Standard Array
7. Syndrome Decoding

Quick Review of Last Lecture

- Equivalence of Linear Codes
- The definition of equivalence of linear codes C_{1} and C_{2}
- Generator matrix in systematic form $G=\left(I_{k} \mid P\right)$
- Parity-check matrix in systematic form $H=\left(-P^{T} \mid I_{n-k}\right)$
- The Singleton Bound $d \leq 1+n-k$
- Examples
- Minimum Distance of Linear Codes
- The d is the minimum number of linearly dependent columns of parity-check matrix H.
- Meaning of linearly dependent of columns of H
- Examples

Minimum Distance of Linear Codes

- Corollary 7.31

There is a t-error-correcting linear $[n, k]$-code over F if and only if there is an $(n-k) \times n$ matrix H over F, of rank $n-k$, with every set of $2 t$ columns linearly independent.

- Proof:
$(\Rightarrow) \quad$ Given such a code C, let H be a parity-check matrix for C,
So H has n columns and $n-k$ independent rows.
By Theorem 6.10, C has minimum distance $d \geq 2 t+1$.
By Theorem 7.27, every set of at most $d-1$ columns are linearly independent

So every set of $2 t$ columns are linearly independent

- Corollary 7.31

There is a t-error-correcting linear $[n, k]$-code over F if and only if there is an $(n-k) \times n$ matrix H over F, of rank $n-k$, with every set of $2 t$ columns linearly independent.

- Proof:
$(\Leftarrow) \quad$ Given such a matrix H

$$
\text { let } \mathcal{V}=F^{n} \text { and let } \mathcal{C}=\left\{\mathbf{v} \in \mathcal{V} \mid \mathbf{v} H^{\mathrm{T}}=\mathbf{0}\right\}
$$

Since H has rank $n-k$, its $n-k$ rows are linearly independent
So C has dimension k

By hypothesis, every set of linearly dependent columns of H contains at least $2 t+1$ columns

So Theorem 7.27 implies that C has minimum distance $d \geq 2 t+1$
Hence C corrects t errors by Theorem 6.10.

7.4 The Hamming Codes $\sum_{t=0}^{t}\binom{n}{i}(q-1)^{4} \leq q^{n-4}$

- For a 1-error-correcting binary linear code, put $t=1$ and $q=2$ in the sphere-packing bound (Corollary 6.17), so the condition for a perfect code becomes

$$
2^{n-k}=1+\binom{n}{1}=1+n
$$

- Let $c=n-k$ (the number of check digits), then this condition is equivalent to

$$
\begin{equation*}
n=2^{c}-1 \tag{7.4}
\end{equation*}
$$

- So

$$
\begin{array}{ll}
c= & 1 \\
n= & 1 \\
k= & 0
\end{array}
$$

$$
\begin{aligned}
& 2 \\
& 3 \\
& 1
\end{aligned}
$$

3
7
4
4
15
11

5
...
31
26

The Hamming Codes (Cont.)

Construct codes with these parameters on $F_{2}=\{0,1\}$

- By Corollary 7.31, need to construct a $c \times n$ matrix H over F_{2}, of rank c, with every pair of columns linearly independent (non-zero and distinct).
- Columns of H must consist of all $2^{\mathrm{c}}-1$ non-zero binary vectors of length c, in some order.
- This matrix H has rank of c. Use it as the parity-check matrix, we have a code C with these parameters. This code is called the binary Hamming code $\boldsymbol{H}_{\boldsymbol{n}}$ of length n $=2^{c}-1$.
- Example 7.32
- H_{3} has the parity checking matrix $H=\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1\end{array}\right)$
- $c=2, n=3, k=1$
- H_{3} is R_{3} !!!
- Note: The rate of H_{n} will approaches to 1.

$$
R=\frac{k}{n}=\frac{2^{c}-1-c}{2^{c}-1} \rightarrow 1
$$

- Nearest neighbor decoding with H_{n}
- The receiver computes $s=v H^{T}$,
- Called the syndrome of v.
- If $s=0$, the receiver decodes v as $\Delta(v)=v$, and
- if $s=c_{i}^{T}$ (the i-th column of H) then $\Delta(v)=v-e_{i}$.

Nearest Neighbor Decoding

- Example 7.33
- Let us use H_{7}, with parity-check matrix

$$
\begin{array}{r}
H=\left(\begin{array}{lllllll}
0 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 1
\end{array}\right) \\
v=\left(\begin{array}{lllllll}
1 & 1 & 0 & 1 & 1 & 0 & 1
\end{array}\right)
\end{array}
$$

- Suppose that $u=1101001$ is sent, and $v=1101101$ is received, so the error-pattern is $e=e_{5}$.
- The syndrome is $s=v H^{T}=100$, which is the transpose $c_{5}{ }^{T}$ of the fifth column of H.
- This indicates an error in the fifth position, so changing this entry of v we get $\Delta(v)=1101001=u$
- Using the parity checking matrix as below, then a nonzero syndrome is the binary representation of the position i where a single error e, has appeared

$$
H=\left(\begin{array}{lllllll}
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right)
$$

- Example 7.34
- Verify this using example 7.33

$$
\begin{array}{lr}
u=1101001 & H=\left(\begin{array}{lllllll}
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right) \\
v=1101101 & v=\left(\begin{array}{lllllll}
1 & 1 & 0 & 1 & 1 & 0 & 1
\end{array}\right) \\
s=v H^{T}=101 & \\
\Delta(v)=1101001=u & \\
& \\
&
\end{array}
$$

- Note: need to perform a column permutation (1362547) to change between the two representations.

Construction of perfect 1-error-correcting linear codes for prime-powers q > 2

- We take the columns of H to be

$$
n=\frac{q^{c}-1}{q-1}=1+q+q^{2}+\cdots+q^{c-1} \quad \sum_{i=0}^{t}\binom{n}{i}(q-1)^{i} \leq q^{n-k}
$$

pairwise linearly independent vectors of length c over F_{q}.

- The resulting linear code has length n, dimension $k=n-c$, and minimum distance $d=3$, so $t=1$.
- As in the binary case, $R \rightarrow 1$ as $c \rightarrow \infty$, but $\operatorname{Pr}_{\mathrm{E}} \nrightarrow 0$.

Construction of perfect 1-error-correcting linear codes for prime-powers q > 2

- Example 7.35
- If $q=3$ and $c=2$, then $n=4$ and $k=2$.
- We can take

$$
H=\left(\begin{array}{llll}
1 & 1 & 1 & 0 \\
1 & 2 & 0 & 1
\end{array}\right)
$$

- The solutions of the simultaneous linear equations

$$
v H^{T}=0
$$

will give a perfect 1-error-correcting linear [4, 2]-code over F_{3}

$$
n=\frac{q^{c}-1}{q-1}=1+q+q^{2}+\cdots+q^{c-1}
$$

7.5 The Golay Codes

- Skip this section

7.6 The Standard Array

- Suppose $C \subseteq V$ is a linear code. The standard array of C is essentially a table in which the elements of V are arranged into cosets of the subspace C.
- Suppose that $\mathcal{C}=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{M}\right\}$ is a linear code with $M=q^{k}$ elements. Assume $\boldsymbol{u}_{\mathbf{1}}=\mathbf{0}$.
- For $i=1, \ldots, q^{n-k}-1$, let the i-th row consist of the elements of the coset of C.

$$
\mathbf{v}_{i}+\mathcal{C}=\left\{\mathbf{v}_{i}+\mathbf{u}_{1}\left(=\mathbf{v}_{i}\right), \mathbf{v}_{i}+\mathbf{u}_{2}, \ldots, \mathbf{v}_{i}+\mathbf{u}_{M}\right\}
$$

where $w t\left(v_{i}\right) \leq w t\left(v_{i+1}\right), i=1, \ldots, q^{n-k}-1$ and v_{i} is not in the previous (<i) rows.

- A horizontal line across the array, immediately under the last row to satisfy $w t\left(v_{i}\right) \leq t$, where $t=\lfloor(d-1) / 2\rfloor$.

The Standard Array (Cont.)

- Example 7.39
- Let C be the binary repetition code R_{4} of length $\mathrm{n}=4$, so $q=2$,
$v_{1}+C \quad 00001111$
$k=1$ and the code-words are $\boldsymbol{u}_{\mathbf{1}}=\mathbf{0}=0000$ and $\boldsymbol{u}_{\mathbf{2}}=\mathbf{1}=1111$
- There are $q^{n-k}=8$ cosets of C in V, each with two vectors
- So, standard array has 8 rows:

$$
\begin{aligned}
& v_{1}+C, v_{2}+C, \ldots, v_{8}+C \\
& v_{1}=\text { has weight } 0 \\
& v_{2} \text { to } v_{5} \text { has weight } 1 \\
& v_{6}, v_{7}, v_{8} \text { has weight } 2
\end{aligned}
$$

The Standard Array (Cont.)

- Lemma 7.40
a) If v is in the j-th column of the standard array (that is, $v=v_{i}+u_{j}$ for some i), then u_{j} is a nearest code-word to v.
b) If, in addition, v is above the line in the standard array (that is, $w t\left(v_{i}\right) \leq$ t), then u_{j} is the unique nearest code-word to v.

	$\boldsymbol{u}_{\mathbf{1}}$ 0000	\boldsymbol{u}_{2}	
	1111		
$v_{1}+C$	0000	1111	u_{1}
$v_{2}+C$	1000	0111	
$v_{3}+C$	0100	1011	
$v_{4}+C$	0010	1101	v
$v_{5}+C$	0001	1110	
$v_{6}+C$	1100	0011	
$v_{7}+C$	1010	0101	
$v_{8}+C$	1001	0110	

The Standard Array (Cont.)

- The sphere $S_{t}\left(u_{j}\right)$ of radius t about u_{j} is the part of the j-th column above the line.
- Thus C is perfect if and only if the entire standard array is above the line

The Standard Array (Cont.)

- Decoding rule
- Suppose that a code-word $u \in C$ is transmitted, and $v=u+e \in$ V is received, where e is the error-pattern.
- The receiver finds $v=v_{i}+u_{j}$ in the standard array, and decides that $\Delta(v)=u_{j}\left(u_{j}\right.$ is header of a column)
- Note this rule gives correct decoding if and only if the errorpattern is a coset leader $\left(e=v_{i}\right)$.

	$\boldsymbol{u}_{\mathbf{1}}$	$\boldsymbol{u}_{\mathbf{2}}$	
	0000	1111	u
$v_{1}+C$	0000	1111	
$v_{2}+C$	1000	0111	
$v_{3}+C$	0100	1011	
$v_{4}+C$	0010	1101	
$v_{5}+C$	0001	1110	v
$v_{6}+C$	1100	0011	
$v_{7}+C$	1010	0101	
$v_{8}+C$	1001	0110	

Example 7.41

- Let $C=R_{4}$. Suppose that $\boldsymbol{u}=$ 1111 is sent, and the errorpattern is $e=0100, v=$? And $u_{j}=$?
- How about when $e=0110$?
- How about when e = 1100?

	$\boldsymbol{u}_{\boldsymbol{1}}$ 0000	$\boldsymbol{u}_{\mathbf{2}}$	
	1111	u	
$v_{1}+C$	0000	1111	
$v_{2}+C$	1000	0111	
$v_{3}+C$	0100	1011	
$v_{4}+C$	0010	1101	
$v_{5}+C$	0001	1110	
$v_{6}+C$	1100	0011	
$v_{7}+C$	1010	0101	
$v_{8}+C$	1001	0110	

7.7 Syndrome Decoding

- If H is a parity-check matrix for a linear code $C \subseteq V$ then the syndrome of a vector $v \in V$ is the vector

$$
\begin{equation*}
\mathbf{s}=\mathbf{v} H^{\mathrm{T}} \in F^{n-k} \tag{7.8}
\end{equation*}
$$

- Lemma 7.42
- Let C be a linear code, with parity-check matrix H, and let $v, v^{\prime} \in V$ have syndromes s, s^{\prime}. Then v and v^{\prime} lie in the same coset of C if and only if $s=s^{\prime}$.
- Proof of Lemma 7.42

$$
\begin{aligned}
\mathbf{v}+\mathcal{C}=\mathbf{v}^{\prime}+\mathcal{C} & \Longleftrightarrow \mathbf{v}-\mathbf{v}^{\prime} \in \mathcal{C} \\
& \left.\Longleftrightarrow\left(\mathbf{v}-\mathbf{v}^{\prime}\right) H^{\mathrm{T}}=\mathbf{0} \quad \text { (by Lemma } 7.10\right) \\
& \Longleftrightarrow \mathbf{v} H^{\mathrm{T}}=\mathbf{v}^{\prime} H^{\mathrm{T}} \\
& \Longleftrightarrow \mathbf{s}=\mathbf{s}^{\prime}
\end{aligned}
$$

