Coding and Information Theory Chapter 7: Linear Codes - C

Xuejun Liang 2022 Fall

Chapter 7: Linear Codes

- 1. Matrix Description of Linear Codes
- 2. Equivalence of Linear Codes
- 3. Minimum Distance of Linear Codes
- 4. The Hamming Codes
- 5. The Golay Codes
- 6. The Standard Array
- 7. Syndrome Decoding

Quick Review of Last Lecture

- Matrix Description of Linear Codes
 - Linear code $C \subseteq V = F^n$ and let dim(C) = k
 - Dual Code D of C: dim(D) = n k
 - Orthogonal Code C^{\perp} of $C:D=C^{\perp}$ and $C=D^{\perp}$
 - Examples:
 - $C = C^{\perp}$
 - $R_n^{\perp} = P_n$ and $P_n^{\perp} = R_n$
 - The code H_7^{\perp} is a linear [7, 3]-code over F_2
 - The conditions for H to be a parity-check matrix for C

7.2 Equivalence of Linear Codes

- The elementary row operations of matrix consist of
 - permuting rows,
 - multiplying a row by a non-zero constant, and
 - replacing a row r_i with $r_i + ar_j$ where $j \neq i$ and $a \neq 0$.
- Two linear codes C_1 and C_2 are **equivalent** if they have generator matrices G_1 and G_2 which differ only by elementary row operations and permutations of columns.
 - Elementary row operations on generator G may change the basis for C, but they do not change the subspace C.
 - Permutations of columns of G may change C, but the new code will differ from C only in the order of symbols within code-words.

Equivalence of Linear Codes (Cont.)

 By systematically using elementary row operations and column permutations, one can convert any generator matrix into the form

$$G = (I_k \mid P) = \begin{pmatrix} 1 & * & * & * & \dots & * \\ & 1 & & * & * & \dots & * \\ & & \ddots & & \vdots & \vdots & & \vdots \\ & & 1 & * & * & \dots & * \end{pmatrix}$$
(7.2)

- We then say that G (or C) is in systematic form.
 - In this case, each $\mathbf{a} = a_1 \dots a_k \in F^k$ is encoded as $\mathbf{u} = \mathbf{a}G = a_1 \dots a_k a_{k+1} \dots a_n$
 - where $a_1 \dots a_k$ are information digits and $a_{k+1} \dots a_n = \boldsymbol{a}P$ is a block of n k check digits.

Two Examples

- Example 7.18
 - The generator matrices G for the codes R_n and P_n are in systematic form.

$$G = (1 \quad 1 \quad \dots \quad 1)$$

$$G = \begin{pmatrix} 1 & & & -1 \\ & 1 & & -1 \\ & & \ddots & & \vdots \\ & & 1 & -1 \end{pmatrix}$$

- Example 7.19.
 - The generator matrix G for H_7 , is not in systematic form.
 - But, it can be transformed into systematic form.

$$G_1 = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{pmatrix} \qquad G_2 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}$$

Equivalence of Linear Codes (Cont.)

• If we have a generator matrix $G = (I_k|P)$ in systematic form for a linear code C, then we can find a parity-check matrix for C.

$$H = (-P^{\mathrm{T}} \mid I_{n-k}) \tag{7.3}$$

- This is the systematic form for a parity-check matrix
- Prove this by using Lemma 7.17
 - H has n k rows and n columns
 - Its rows are independent
 - $GH^{T} = I_{k}(-P) + PI_{n-k} = -P + P = 0$.

Parity-check matrix in systematic form

$$G = (I_k|P) H = (-P^T|I_{n-k})$$

• Example 7.20: For the code R_n

$$k = 1$$

 $G = (1,1,...,1)_{1 \times n}$ $H = (-P^T | I_{n-1}) = \begin{pmatrix} -1 & 1 & & \\ -1 & & 1 & \\ \vdots & & \ddots & \\ -1 & & & 1 \end{pmatrix}_{(n-1) \times n}$
 $P = (1,...,1)_{1 \times (n-1)}$

• Example 7.21: For the code P_n

$$k = n - 1$$

$$G = \begin{pmatrix} 1 & & & -1 \\ & 1 & & & -1 \\ & & \ddots & & \vdots \\ & & & 1 & -1 \end{pmatrix}_{(n-1) \times n} \qquad P^{T} = (-1, \dots, -1)_{1 \times (n-1)}$$

$$H = (1, 1, \dots, 1)_{1 \times n}$$

Parity-check matrix in systematic form

$$G = (I_k|P) H = (-P^T|I_{n-k})$$

• Example 7.22: for the code H_7

$$k = 4$$

$$G = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}$$

$$P = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \qquad H = \begin{pmatrix} 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$

The Singleton Bound

Exercise 6.18

Prove the Singleton bound: if a code $\mathcal C$ over F_q has length n, minimum distance d, and M code-words, then

$$\log_q M \le n - d + 1.$$

Deleting d-1 symbols from each code-words in C, then C still has M distinct words of length n-d+1 over F_q .

There are at most q^{n-d+1} words of length n-d+1 over F_q , so $M \leq q^{n-d+1}$

Theorem 7.23

If C is a linear code of length n, dimension k, and minimum distance d, then

$$d \leq 1 + n - k$$
.

Two proofs

$$M = q^k$$

Generator of C in systematic form $G = (I_k|P)$

Weight of each row vector of $G \leq 1 + n - k$

So,
$$d \le 1 + n - k$$

The Singleton Bound

 $d \le 1 + n - k.$

- Example 7.24
 - The Singleton bound is attained by R_n
 - with k = 1 and d = n,
 - The Singleton bound is also attained by P_n
 - with k = n 1 and d = 2;
 - But, not by H_7 ,
 - with d = 3 and 1 + n k = 4,
- Corollary 7.25
 - A t-error-correcting linear [n, k]-code requires at least 2t check digits.
- Example 7.26
 - The linear codes R_3 and H_7 both have t=1; the number of check digits is n-k=2 or 3 respectively.

7.3 Minimum Distance of Linear Codes

Theorem 7.27

• Let C be a linear code of minimum distance d, and let H be a parity-check matrix for C. Then d is the minimum number of linearly dependent columns of H.

Proof

- Let $v = v_1 v_2 \dots v_n \in V$ and $H = (c_1 c_2 \dots c_n)$
- $v \in C \Leftrightarrow vH^T = 0 \Leftrightarrow v_1c_1 + v_2c_2 + \dots + v_nc_n = 0$
- weight of v in C
 - = number of non-zero v_i 's
 - = number of c_i 's that are linearly dependent
- d = minimum weight of code-words in C
 - = the minimum number of c_i 's that are linearly dependent
 - = the minimum number of linearly dependent columns of H

Minimum Distance of Linear Codes (Cont.)

- Meaning of linearly dependent of columns of H
 - One column c_i linearly dependent, then $c_i=\mathbf{0}$
 - Two columns c_i and c_j linearly dependent, then c_i is multiple of c_i (or c_i is multiple of c_i).
 - So, $d \ge 3$ if and only if the columns of H are non-zero and none is a multiple of any other.
- Example 7.28
 - The parity-check matrix $H = (1\ 1\ ...\ 1)$ for P_n has its columns non-zero and equal , so P_n has minimum distance d=2.

Minimum Distance of Linear Codes (Cont.)

• Example 7.29

In the parity-check matrix H for R_n , any set of n - 1 columns are linearly independent, while $c_1 + \cdots + c_n = 0$. So d = n.

$$H = \begin{pmatrix} 1 & & & -1 \\ & 1 & & -1 \\ & & \ddots & \vdots \\ & & 1 & -1 \end{pmatrix}$$

• Example 7.30

Now, look at the paritycheck matrix H for H_7

$$H = \begin{pmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}$$