Coding and Information Theory

Chapter 7:
Linear Codes - C
Xuejun Liang
2022 Fall

Chapter 7: Linear Codes

1. Matrix Description of Linear Codes
2. Equivalence of Linear Codes
3. Minimum Distance of Linear Codes
4. The Hamming Codes
5. The Golay Codes
6. The Standard Array
7. Syndrome Decoding

Quick Review of Last Lecture

- Matrix Description of Linear Codes
- Linear code $C \subseteq V=F^{n}$ and let $\operatorname{dim}(C)=k$
- Dual Code D of $C: \operatorname{dim}(D)=n-k$
- Orthogonal Code C^{\perp} of $C: D=C^{\perp}$ and $C=D^{\perp}$
- Examples:
- $C=C^{\perp}$
- $R_{n}{ }^{\perp}=P_{n}$ and $P_{n}{ }^{\perp}=R_{n}$
- The code H_{7}^{1} is a linear [7,3]-code over F_{2}
- The conditions for H to be a parity-check matrix for C

7.2 Equivalence of Linear Codes

- The elementary row operations of matrix consist of
- permuting rows,
- multiplying a row by a non-zero constant, and
- replacing a row r_{i} with $r_{i}+a r_{j}$ where $j \neq i$ and $a \neq 0$.
- Two linear codes C_{1} and C_{2} are equivalent if they have generator matrices G_{1} and G_{2} which differ only by elementary row operations and permutations of columns.
- Elementary row operations on generator G may change the basis for C, but they do not change the subspace C.
- Permutations of columns of G may change C, but the new code will differ from C only in the order of symbols within code-words.

Equivalence of Linear Codes (Cont.)

- By systematically using elementary row operations and column permutations, one can convert any generator matrix into the form

$$
G=\left(I_{k} \mid P\right)=\left(\begin{array}{cccccccc}
1 & & & & * & * & \ldots & * \tag{7.2}\\
& 1 & & & * & * & \ldots & * \\
& & \ddots & & \vdots & \vdots & & \vdots \\
& & & 1 & * & * & \ldots & *
\end{array}\right)
$$

- We then say that G (or C) is in systematic form.
- In this case, each $\boldsymbol{a}=a_{1} \ldots a_{k} \in F^{k}$ is encoded as

$$
\mathbf{u}=\mathbf{a} G=a_{1} \ldots a_{k} a_{k+1} \ldots a_{n}
$$

- where $a_{1} \ldots a_{k}$ are information digits and $a_{k+1} \ldots a_{n}=\boldsymbol{a} P$ is a block of $n-k$ check digits.

Two Examples

- Example 7.18
- The generator matrices G for the codes R_{n} and P_{n} are in systematic form.

$$
G=\left(\begin{array}{llll}
1 & 1 & \ldots & 1
\end{array}\right)
$$

$$
G=\left(\begin{array}{ccccc}
1 & & & & -1 \\
& 1 & & & -1 \\
& & \ddots & & \vdots \\
& & & 1 & -1
\end{array}\right)
$$

- Example 7.19.
- The generator matrix G for H_{7}, is not in systematic form.
- But, it can be transformed into systematic form.

$$
G_{1}=\left(\begin{array}{lllllll}
1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 1
\end{array}\right) \quad G_{2}=\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right)
$$

Equivalence of Linear Codes (Cont.)

- If we have a generator matrix $G=\left(I_{k} \mid P\right)$ in systematic form for a linear code C, then we can find a paritycheck matrix for C.

$$
\begin{equation*}
H=\left(-P^{\mathrm{T}} \mid I_{n-k}\right) \tag{7.3}
\end{equation*}
$$

- This is the systematic form for a parity-check matrix
- Prove this by using Lemma 7.17
- H has n-k rows and n columns
- Its rows are independent
- $G H^{\mathrm{T}}=I_{k}(-P)+P I_{n-k}=-P+P=0$.

Parity-check matrix in systematic form

$$
G=\left(I_{k} \mid P\right) \quad H=\left(-P^{T} \mid I_{n-k}\right)
$$

- Example 7.20: For the code R_{n}

$$
\begin{aligned}
k & =1 \\
G & =(1,1, \ldots, 1)_{1 \times n} \\
P & =(1, \ldots, 1)_{1 \times(n-1)}
\end{aligned} \quad H=\left(-P^{T} \mid I_{n-1}\right)=\left(\begin{array}{ccccc}
-1 & 1 & & & \\
-1 & & 1 & & \\
\vdots & & \ddots & \\
-1 & & & & 1
\end{array}\right)_{(n-1) \times n}
$$

- Example 7.21: For the code P_{n}

$$
\begin{array}{lll}
k=n-1 & & \\
G=\left(\begin{array}{cccc}
1 & & & -1 \\
& 1 & & \\
-1 \\
& & \ddots & \\
& & & P^{T}=(-1, \ldots,-1)_{1 \times(n-1)} \\
& & & 1
\end{array}-1\right)_{(n-1) \times n} & H=(1,1, \ldots, 1)_{1 \times n}
\end{array}
$$

Parity-check matrix in systematic form

$$
G=\left(I_{k} \mid P\right) \quad H=\left(-P^{T} \mid I_{n-k}\right)
$$

- Example 7.22: for the code H_{7}

$$
\begin{aligned}
k & =4 \\
G & =\left(\begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right) \\
P=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right) & H=\left(\begin{array}{lllllll}
0 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

The Singleton Bound

- Exercise 6.18

Prove the Singleton bound: if a code C over F_{q} has length n, minimum distance d, and M code-words, then

$$
\log _{q} M \leq n-d+1
$$

Deleting $d-1$ symbols from each code-words in C, then C still has M distinct words of length $n-d+1$ over F_{q}.

There are at most q^{n-d+1} words of length $n-d+1$ over F_{q}, so $M \leq q^{n-d+1}$

- Theorem 7.23

If C is a linear code of length n, dimension k, and minimum distance d, then

$$
d \leq 1+n-k
$$

- Two proofs

$$
M=q^{k}
$$

Generator of C in systematic form $G=\left(I_{k} \mid P\right)$
Weight of each row vector of $G \leq 1+n-k$

$$
\text { So, } d \leq 1+n-k
$$

The Singleton Bound $d \leq 1+n-k$.

- Example 7.24
- The Singleton bound is attained by R_{n}
- with $k=1$ and $d=\mathrm{n}$,
- The Singleton bound is also attained by P_{n}
- with $k=n-1$ and $d=2$;
- But, not by H_{7},
- with $d=3$ and $1+n-k=4$,
- Corollary 7.25
- A t-error-correcting linear [n, k]-code requires at least $2 t$ check digits.
- Example 7.26
- The linear codes R_{3} and H_{7} both have $t=1$; the number of check digits is $n-k=2$ or 3 respectively.

7.3 Minimum Distance of Linear Codes

- Theorem 7.27
- Let C be a linear code of minimum distance d, and let H be a parity-check matrix for C. Then d is the minimum number of linearly dependent columns of H.
- Proof
- Let $v=v_{1} v_{2} \ldots v_{n} \in V$ and $H=\left(c_{1} c_{2} \ldots c_{n}\right)$
- $v \in C \Leftrightarrow v H^{T}=0 \Leftrightarrow v_{1} c_{1}+v_{2} c_{2}+\cdots+v_{n} c_{n}=0$
- weight of v in C
$=$ number of non-zero $v_{i}{ }^{\prime}$ s
$=$ number of c_{i} 's that are linearly dependent
- $d=$ minimum weight of code-words in C
$=$ the minimum number of $c_{i}{ }^{\prime}$ s that are linearly dependent
= the minimum number of linearly dependent columns of H

Minimum Distance of Linear Codes (Cont.)

- Meaning of linearly dependent of columns of H
- One column $\boldsymbol{c}_{\boldsymbol{i}}$ linearly dependent, then $\boldsymbol{c}_{\boldsymbol{i}}=\mathbf{0}$
- Two columns $\boldsymbol{c}_{\boldsymbol{i}}$ and $\boldsymbol{c}_{\boldsymbol{j}}$ linearly dependent, then $\boldsymbol{c}_{\boldsymbol{i}}$ is multiple of $\boldsymbol{c}_{\boldsymbol{j}}$ (or $\boldsymbol{c}_{\boldsymbol{j}}$ is multiple of $\boldsymbol{c}_{\boldsymbol{i}}$).
- So, $d \geq 3$ if and only if the columns of H are non-zero and none is a multiple of any other.
- Example 7.28
- The parity-check matrix $H=\left(\begin{array}{lll}1 & 1 & 1\end{array}\right)$ for P_{n} has its columns non-zero and equal, so P_{n} has minimum distance $d=2$.

Minimum Distance of Linear Codes (Cont.)

- Example 7.29

In the parity-check matrix H
for R_{n}, any set of $n-1$ columns
are linearly independent, while $c_{1}+\cdots+c_{n}=0$.

$$
H=\left(\begin{array}{ccccc}
1 & & & & -1 \\
& 1 & & & -1 \\
& & \ddots & & \vdots \\
& & & 1 & -1
\end{array}\right)
$$

So $d=n$.

- Example 7.30

Now, look at the paritycheck matrix H for H_{7}

$$
H=\left(\begin{array}{lllllll}
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right)
$$

