Coding and Information Theory Chapter 6: Error-correcting Codes - B _{Xuejun Liang Fall 2022}

Chapter 6: Error-correcting Codes

- 1. Introductory Concepts
- 2. Examples of Codes
- 3. Minimum Distance
- 4. Hamming's Sphere-packing Bound
- 5. The Gilbert-Varshamov Bound
- 6. Hadamard Matrices and Codes

Quick Review of Last Lecture

- Introductory Concepts
 - Galois Field: F
 - Linear Code: $C \subseteq F^n$
 - The rate of a code: $R = \frac{\log_q M}{n}$ $R = \frac{k}{n}$
 - Notes
 - Chanel $\Gamma: A \rightarrow B$, where A=B=F
 - Equiprobable, Nearest neighbor decoding
- Examples of Codes
 - Repetition code R_n over a field F
 - Parity-check code P_n over a field F
 - Hamming Code H_n

Examples of Codes (Cont.)

- Example 6.6
 - Suppose that C is a code of length n over a field F. Then we can form a code of length n + 1 over F, called the extended code C. by
 - Adjoining an extra digit u_{n+1} to every code-word $u = u_1u_2 \dots u_n \in C$ such that $u_1 + u_2 + \dots + u_{n+1} = 0$.
 - Clearly $|\overline{C}| = |C|$, and if C is linear then so is \overline{C} , with the same dimension
 - Example: if $C = V = F^n$ then $\overline{C} = P_{n+1} \subset F^{n+1}$
- Example 6.7
 - If C is a code of length n, we can form a punctured code
 C° of length n 1 by
 - Choosing a coordinate position *i*, and deleting the symbol u_i from each codeword $u_1u_2 \dots u_n \in C$.

6.3 Minimum Distance

- Define the minimum distance of a code C to be $d = d(C) = \min\{d(\mathbf{u}, \mathbf{u}') \mid \mathbf{u}, \mathbf{u}' \in C, \ \mathbf{u} \neq \mathbf{u}'\},$ (6.3)
- (n, M, d)-code
 - A code of length *n*, with *M* code-words, and with minimum distance *d*.
- [n, k, d]-code
 - A linear (n, M, d)-code, of dimension k.
- Our aim is to choose codes C for which d is large, so that Pr_E will be small.

• Define the weight of any vector $v = v_1 v_2 \dots v_n \in V$ to be

$$wt(\mathbf{v}) = d(\mathbf{v}, \mathbf{0}), \tag{6.4}$$

- It is easy to see that for all $u, u' \in V$, we have $d(\mathbf{u}, \mathbf{u}') = \operatorname{wt}(\mathbf{u} \mathbf{u}')$
- Lemma 6.8
 - If *C* is a linear code, then its minimum distance *d* is given by

 $d = \min\{ \operatorname{wt}(\mathbf{v}) \mid \mathbf{v} \in \mathcal{C}, \mathbf{v} \neq \mathbf{0} \}.$

- Proof: Lemma 6.8
 - Let $d_1 = \min\{\operatorname{wt}(\mathbf{v}) \mid \mathbf{v} \in \mathcal{C}, \mathbf{v} \neq \mathbf{0}\}.$
 - Let $d_2 = \min\{d(\mathbf{u}, \mathbf{u}') \mid \mathbf{u}, \mathbf{u}' \in \mathcal{C}, \mathbf{u} \neq \mathbf{u}'\}$
 - Want to prove $d_1 = d_2$

- We say that a code C corrects t errors, or is t-errorcorrecting, if, whenever a code-word u ∈ C is transmitted and is then received with errors in at most t of its symbols, the resulting received word v is decoded correctly as u.
- Equivalently, whenever $u \in C$ and $v \in V$ satisfy $d(u, v) \leq t$, the decision rule Δ gives $\Delta(v) = u$.
- Example 6.9
 - A repetition code R₃ corrects one error, but not two.

- If u is sent and v is received, we call the vector e = v u the error pattern.
 - d(u, v) = wt(e) = the number of incorrect symbols
 - A code corrects t errors if and only if it can correct all errorpatterns e ∈ V of weight wt(e) ≤ t.
- Theorem 6.10
 - A code *C* of minimum distance *d* corrects *t* errors if and only if $d \ge 2t + 1$. (Equivalently, *C* corrects up to $\left|\frac{d-1}{2}\right|$ errors.)
- Example 6.11
 - A repetition code R_n of length n has minimum distance d = n, since d(u, u') = n for all $u \neq u'$ in R_n . This code therefore corrects $t = \lfloor (n - 1)/2 \rfloor$ errors.

- Proof of Theorem 6.10
 - A code C of minimum distance d corrects t errors if and only if $d \ge 2t + 1$.

- Example 6.12
 - Exercise 6.3 shows that the Hamming code H₇ has minimum distance d = 3, so it has t = 1 (as shown in §6.2). Similarly, H₇ has d = 4 (by Exercise 6.4), so this code also has t = 1.
- Example 6.13
 - A parity-check code P_n of length n has minimum distance d = 2; for instance, the code-words u =110 ... 0 and u' = 0 = 00 ... 0 are distance 2 apart, but no pair are distance 1 apart. It follows that the number of errors corrected by P_n is 0.

- C detects d 1 errors
 - d(u,v) = the number of incorrect symbols
- Example 6.14
 - The codes R_n and P_n have d = n and 2 respectively, so R_n detects n-1 errors, while P_n detects one; H_7 has d = 3, so it detects two errors.