Coding and Information Theory Chapter 6: Error-correcting Codes - A ^{Xuejun Liang} Fall 2022

Chapter 6: Error-correcting Codes

- 1. Introductory Concepts
- 2. Examples of Codes
- 3. Minimum Distance
- 4. Hamming's Sphere-packing Bound
- 5. The Gilbert-Varshamov Bound
- 6. Hadamard Matrices and Codes

The aim of this chapter

- Is to construct codes C with good transmissionrates R and low error-probabilities Pr_E, as promised by Shannon's Fundamental Theorem.
 - This part of the subject goes under the name of Coding Theory (or Error-correcting Codes), as opposed to Information Theory.
- Will concentrate on a few simple examples to illustrate some of the methods used to construct more advanced codes

6.1 Introductory Concepts

- Assume channel Γ has input A and output B, and A
 = B = F, where F is a finite field.
- Note Z_p of integers mod (p) is a finite field, where p is a prime number.
- Theorem 6.1
 - a) There is a finite field of order q if and only if $q = p^e$ for some prime p and integer $e \ge 1$.
 - b) Any two finite fields of the same order are isomorphic.

Galois Field

- The essentially unique field of order $q = p^e$ is known as the Galois field F_q or GF(q).
 - When e = 1, then q = p and $F_q = F_p = Z_p$.
 - When e > 1, $F_q = Z_p[x]/f(x)$, where f(x) is an irreducible polynomial of degree e on the field Z_p .
 - When e > 1, $F_q = Z_p[\alpha]$, where α is a root of f(x) which an irreducible polynomial of degree e on the field Z_p .
- Example 6.2
 - The quadratic polynomial $f(x) = x^2 + x + 1$ has no roots in the field Z_2 .

 $F_4 = \{a + bx \mid a, b \in Z_2\} = \{0, 1, x, 1 + x\}$ $F_4 = \{a + b\alpha \mid a, b \in \mathbb{Z}_2\} = \{0, 1, \alpha, 1 + \alpha\}$

Linear Code

- Let F be a field, then the set $V = F^n$ of all n-tuples with coordinates in F is an n-dimensional vector space over F.
 - the operations are component wise addition and scalar multiplication
- Assume that any code-words in C are of length n
 - So C is a subset of the set $V = F^n$
- We say that C is a linear code (or a group code) if C is a non-empty linear subspace of V.
 - If $\boldsymbol{u}, \boldsymbol{v} \in C$ then $a\boldsymbol{u} + b\boldsymbol{v} \in C$ for all $a, b \in F$

The rate of a code *C*

- We will always denote |C| by M
- When C is linear we have M = q^k, where k = dim(C) is the dimension of the subspace C.
 - We then call *C* a linear [*n*, *k*]-code.
- The rate of a code *C* is $R = \frac{\log_q M}{n}$ (6.1)
 - So in the case of a linear [n, k]-code we have

k information digits, carrying the information n - k check digits, confirming or protecting that information

$$R = \frac{k}{n} \qquad (6.2)$$

Notes

• We will assume that all code-words in *C* are equiprobable, and that we use nearest neighbor decoding (with respect to the Hamming distance on *V*).

6.2 Examples of Codes

- Example 6.3: The repetition code R_n over F
 - the words $\boldsymbol{u} = uu \dots u \in V = F^n$, where $u \in F$, so M = |F| = q.
 - F is a field. So, R_n is a linear code of dimension k = 1, spanned by the word (or vector) 11...1
 - Example:
 - Binary code $R_3 = \{000, 111\}$ as a subset of $V = Z_2^3$

- R_n corrects $\lfloor (n-1)/2 \rfloor$ errors
- R_n has rate $R = 1/n \rightarrow 0$ as $n \rightarrow \infty$,

Examples of Codes (Cont.)

- Example 6.4: The parity-check code P_n over a field $F = F_q$
 - All vectors $u = u_1 u_2 \dots u_n \in V$ such that $\sum_i u_i = 0$.
 - if n = 3 and k = 2
 then P₃={000, 011,101, 110}.

- $M = q^{n-1}$
- R = (n 1)/n, so $R \rightarrow 1$ as $n \rightarrow \infty$
- it will detect a single error, but cannot correct it.

- Example 6.4: The parity-check code P_n over a field $F = F_q$
 - All vectors $u = u_1 u_2 \dots u_n \in V$ such that $\sum_i u_i = 0$.
 - Proof: $Dim(P_n) = n-1$

Hamming Code

- Example 6.5
 - The binary Hamming code H₇ is a linear code of length n
 = 7 over F₂
 - 4 bits for data $\mathbf{a} = a_1 a_2 a_3 a_4$
 - 3 bits for checking
 - How to construct the code for **a**
 - Let the code word $\mathbf{u} = u_1 u_2 u_3 u_4 u_5 u_6 u_7$
 - Bits $u_3 = a_1$, $u_5 = a_2$, $u_6 = a_3$, and $u_7 = a_4$
 - Bits u₁, u₂, u₄ for checking, determined by

 $u_4 + u_5 + u_6 + u_7 = 0$ $u_2 + u_3 + u_6 + u_7 = 0$ $u_1 + u_3 + u_5 + u_7 = 0$

ABC

A=4, B=2, C=1

Hamming Code (Cont.) A

- Example 6.5
 - Example: **a** = 0110

	1	2	3	4	5	6	7
	001	010	011	100	101	110	111
4 (s ₁)				100	100	100	100
2 (s ₂)		010	010			010	010
1 (s ₃)	001		001		001		001
u	1	1	0	0	1	1	0

<i>s</i> ₁	=	u_4	+	u_5	+	<i>u</i> ₆	+	u_7
<i>S</i> ₂	=	<i>u</i> ₂	+	<i>u</i> ₃	+	и ₆	+	u_7
S ₃	=	u_1	+	u_3	+	u_5	+	u_7

- The receiver will compute s₁, s₂, s₃. If they are all zero then the code is no error.
- If not, the binary number s₁s₂s₃ tells which bit is wrong.
- Now, assume $\mathbf{v} = 1110110$ is received with 1-bit error in bit 3. you will get $s_1 = 0$, $s_2 = 1$, and $s_3 = 1$. So, $s_1s_2s_3 = 011 = 3$.

Hamming Code (Cont.) $u_4 + u_5 + u_6 + u_7 = 0$ $u_2 + u_3 + u_6 + u_7 = 0$

 $u_1 + u_3 + u_5 + u_7 = 0$

- Example 6.5 (Cont.)
 - The binary Hamming code H_7 is a linear code with dimension k = 4.
 - $M = |H_7| = 16 = 2^4$
 - It can be generated by

 $u_1 = 1110000, u_2 = 1001100, u_3 = 0101010, u_4 = 1101001$

which are obtained from

 $e_1 = 1000, e_2 = 0100, e_3 = 0010, e_4 = 0001$

- Note:
 - Although the binary codes R_3 and H_7 both correct a single error, the rate R = 4/7 of H_7 is significantly better than the rate 1/3 of R_3 .