Coding and Information Theory Chapter 7: Linear Codes _{Xuejun Liang}

2019 Fall

Chapter 7: Linear Codes

- 1. Matrix Description of Linear Codes
- 2. Equivalence of Linear Codes
- 3. Minimum Distance of Linear Codes
- 4. The Hamming Codes
- 5. The Golay Codes
- 6. The Standard Array
- 7. Syndrome Decoding

Key content in this chapter

- Will study linear codes in greater detail by applying elementary linear algebra and matrix theory
 - including an even simpler method for calculating the minimum distance.
- Theoretical background required includes
 - Topics such as linear independence, dimension, and row and column operations
 - Linear space on a finite field

- Given a linear code $C \subseteq V = F^n$ and let dim(C) = k. A **generator matrix** G for C is defined as a $k \times n$ matrix, in which the row vectors are a basis of C.
- Example 7.1
 - The repetition code R_n over F has a single basis vector $u_1 = 11 \dots 1$, so it has a generator matrix $G = (11 \dots 1)$
- Example 7.2

The parity-check code P_n over F has basis $u_1, ..., u_{n-1}$ where each $u_i = e_i - e_n$ in terms of the standard basis vectors $e_1, ..., e_n$ of V, so it has a generator matrix G

• Example 7.3

A basis $u_1 = 1110000$, $u_2 = 1001100$, $u_3 = 0101010$, $u_4 = 1101001$ for the binary Hamming code H_7 was given in Example 6.5. So this code has a generator matrix G.

$$G = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$

- Given a linear code $C \subseteq V = F^n$ and let dim(C) = k. Encoding of source $A = F^k$ is a linear isomorphism $A \rightarrow C$ ($a \in A \mapsto u \in C$) given by the matrix Gu = aG
- Thus encoding is multiplication by a fixed matrix

- Example 7.4
 - The repetition code R_n has k = 1, so $A = F^1 = F$. Each $\mathbf{a} = a \in A$ is encoded as $\mathbf{u} = \mathbf{a}G = a \dots a \in R_n$.
- Example 7.5
 - If $C = P_n$ then k = n 1, so $A = F^{n-1}$. Each $\mathbf{a} = a_1 \dots a_{n-1} \in A$ is encoded as $\mathbf{u} = \mathbf{a}G = a_1 \dots a_{n-1}a_n$, where $a_n = -(a_1 + \dots + a_{n-1})$, so $\sum_i a_i = 0$
- Example 7.6
 - If $C = H_7$ then n = 7 and k = 4, so $A = F_2^4$. Each $\mathbf{a} = a_1 \dots a_4 \in A$ is encoded as $\mathbf{u} = \mathbf{a}G \in H_7$. For example, a = 0110

- Recall: How to construct the code for $\mathbf{a} = a_1 a_2 a_3 a_4$
 - Let the code word $\mathbf{u} = u_1 u_2 u_3 u_4 u_5 u_6 u_7$
 - Bits $u_3 = a_1$, $u_5 = a_2$, $u_6 = a_3$, and $u_7 = a_4$
 - Bits u₁, u₂, u₄ for checking, determined by

$$u_4 + u_5 + u_6 + u_7 = 0$$

$$u_2 + u_3 + u_6 + u_7 = 0$$

$$u_1 + u_3 + u_5 + u_7 = 0$$

$$\begin{pmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \\ u_6 \\ u_7 \end{pmatrix} = \begin{pmatrix} a_1 + a_2 + a_4 \\ a_1 + a_3 + a_4 \\ a_2 + a_3 + a_4 \\ a_2 \\ a_3 \\ a_4 \end{pmatrix} = a_1 \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + a_2 \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} + a_3 \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} + a_4 \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}$$

- Given a linear code C ⊆ V = Fⁿ and let dim(C) = k.
 C consists of all solutions of a set of n k
 simultaneous linear equations.
- Example 7.7
 - The repetition code R_n consists of the vectors $v = v_1 \dots v_n \in V$ satisfying $v_1 = \dots = v_n$, which can be regarded as a set of n k = n 1 simultaneous linear equations $v_i v_n = 0$ ($i = 1, \dots, n 1$).
- Example 7.8
 - The parity-check code P_n (which has n k = 1) is the subspace of V defined by the single linear equation $v_1 + \cdots + v_n = 0$.

- Example 7.9
 - The Hamming code H_7 consists of the vectors $v = v_1 \dots v_7 \in V = F_2^7$ satisfying

$$v_4 + v_5 + v_6 + v_7 = 0,$$

$$v_2 + v_3 + v_6 + v_7 = 0$$

$$v_1 + v_3 + v_5 + v_7 = 0.$$

- These equations are called parity-check equations
- Their matrix H of coefficients is called a paritycheck matrix for C

- Lemma 7.10
 - Let C be a linear code, contained in V, with parity-check matrix H, and let $v \in V$. Then $v \in C$ if and only if $vH^T = 0$, where H^T denotes the transpose of the matrix H.
- Examples: Compute **parity-check matrix** *H* for *C*
 - 7.11: The repetition code R_n .
 - 7.12: The parity-check code P_n .
 - 7.13: The Hamming code H_7 .

- *H* can be viewed as the matrix of a linear transformation $h: V \rightarrow W = F^{n-k}$
 - $\boldsymbol{v} \mapsto h(\boldsymbol{v}) = \boldsymbol{v} H^T$
- We have
 - $C = \ker(h) = \{v: h(v) = 0\}$
 - $im(h) = \{h(\boldsymbol{v}): \boldsymbol{v} \in V\}$
 - $\dim(V) = \dim(\ker(h)) + \dim(im(h))$
 - H has rank n-k.
- So, n-k rows of H forms a basis of a linear space D ⊆ V of dimension n-k. This linear code, with generator matrix H, called the dual code of C.

- A scalar product on $V = F^n$ is defined as
 - $u \cdot v = (u_1 \dots u_n) \cdot (v_1 \dots v_n) = u_1 v_1 + \dots + u_n v_n \in F$
- \boldsymbol{u} and \boldsymbol{v} are orthogonal if $\boldsymbol{u} \cdot \boldsymbol{v} = 0$
- We have

 $\mathcal{D} = \mathcal{C}^{\perp} = \{ \mathbf{w} \in \mathcal{V} \mid \mathbf{v} \cdot \mathbf{w} = 0 \text{ for all } \mathbf{v} \in \mathcal{C} \}$

- Example 7.14
 - Let q = 2, let n = 2m, and let C be the linear code with basis vectors $u_i = e_{2i-1} + e_{2i}$ for i = 1, ..., m. we have $C = C^{\perp}$.

- Example 7.15
 - The repetition code R_n is spanned by $\mathbf{1} = 1 \dots 1$, so $\mathcal{R}_n^{\perp} = \{ \mathbf{w} \in \mathcal{V} \mid \mathbf{1}.\mathbf{w} = 0 \} = \{ \mathbf{w} \in \mathcal{V} \mid w_1 + \dots + w_n = 0 \} = \mathcal{P}_n$
 - and similarly, $P_n^{\perp} = R_n$
- Example 7.16
 - The code H_7^{\perp} is a linear [7, 3]-code over F_2
- Lemma 7.17
 - Let C be a linear [n, k]-code over F with generator matrix G, and let H be a matrix over F with n columns and n k rows. Then H is a parity-check matrix for C if and only if H has rank n - k and satisfies GH^T = 0.

- The elementary row operations of matrix consist of
 - permuting rows,
 - multiplying a row by a non-zero constant, and
 - replacing a row r_i with $r_i + ar_j$ where $j \neq i$ and $a \neq 0$.
- Two linear codes C₁ and C₂ are equivalent if they have generator matrices G₁ and G₂ which differ only by elementary row operations and permutations of columns.
 - Elementary row operations on generator G may change the basis for C, but they do not change the subspace C.
 - Permutations of columns of G may change C, but the new code will differ from C only in the order of symbols within code-words.

 By systematically using elementary row operations and column permutations, one can convert any generator matrix into the form

$$G = (I_k | P) = \begin{pmatrix} 1 & & * & * & \dots & * \\ 1 & & * & * & \dots & * \\ & \ddots & & \vdots & \vdots & & \vdots \\ & & & 1 & * & * & \dots & * \end{pmatrix}$$
(7.2)

- We then say that G (or C) is in systematic form.
 - In this case, each $a = a_1 \dots a_k \in F^k$ is encoded as $\mathbf{u} = \mathbf{a}G = a_1 \dots a_k a_{k+1} \dots a_n$
 - where a₁ ... a_k are information digits and a_{k+1} ... a_n = aP is a block of n - k check digits.

- Example 7.18
 - The generator matrices G for the codes R_n and P_n are in systematic form.
- Example 7.19.
 - The generator matrix G for H_7 , is not in systematic form.
 - But, it can be transformed into systematic form.
- If we have a generator matrix $G = (I_k | P)$ in systematic form for a linear code C, then we can find a paritycheck matrix for C.

$$H = (-P^{\mathrm{T}} \mid I_{n-k})$$
 (7.3)

• This is the systematic form for a parity-check matrix

- Example 7.20
 - Parity-check matrix in systematic form for the code R_n
- Example 7.21
 - Parity-check matrix in systematic form for the code P_n
- Example 7.22
 - Parity-check matrix in systematic form for the code H_7
- Theorem 7.23 (the Singleton bound (Exercise 6.18) for linear codes)
 - If *C* is a linear code of length *n*, dimension *k*, and minimum distance *d*, then

 $d \le 1 + n - k.$

- Example 7.24
 - The Singleton bound is attained by R_n, with k = 1 and d
 = n, and by P_n, with k = n 1 and d = 2;
 - But, not by H_7 , with d = 3 and 1 + n k = 4,
- Corollary 7.25
 - A *t*-error-correcting linear [*n*, *k*]-code requires at least 2*t* check digits.
- Example 7.26
 - The linear codes R_3 and H_7 both have t = 1; the number of check digits is n k = 2 or 3 respectively.

7.3 Minimum Distance of Linear Codes

- Theorem 7.27
 - Let *C* be a linear code of minimum distance *d*, and let *H* be a parity-check matrix for *C*. Then *d* is the minimum number of linearly dependent columns of *H*.
- Meaning of linearly dependent of columns of *H*
 - One column c_i linearly dependent, then $c_i = 0$
 - Two columns c_i and c_j linearly dependent, then c_i is multiple of c_j (or c_j is multiple of c_i).
 - So, $d \ge 3$ if and only if the columns of H are non-zero and none is a multiple of any other.
- Example 7.28
 - The parity-check matrix $H = (1 \ 1 \ ... \ 1)$ for P_n has its columns nonzero and equal , so P_n has minimum distance d = 2.

Minimum Distance of Linear Codes

- Example 7.29
 - In the parity-check matrix H for R_n , any set of n 1 columns are linearly independent, while $c_1 + \cdots + c_n = 0$. So d = n.
- Example 7.30
 - Now, look at the paritycheck matrix H for H_7 $H = \begin{pmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}$
- Corollary 7.31
 - There is a *t*-error-correcting linear [n, k]-code over F if and only if there is an (n - k) × n matrix H over F, of rank n - k, with every set of 2t columns linearly independent.

 For a 1-error-correcting binary linear code, put t = 1 and q = 2 in the sphere-packing bound (Corollary 6.17), so the condition for a perfect code becomes

$$2^{n-k} = 1 + \binom{n}{1} = 1 + n$$

 Let c = n - k (the number of check digits), then this condition is equivalent to

$$n = 2^c - 1. (7.4)$$

• So c = 1 2 3 4 5 ... n = 1 3 7 15 31 ... k = 0 1 4 11 26 ...

Construct codes with these parameters on $F_2 = \{0,1\}$

- By Corollary 7.31, need to construct a c x n matrix H over F₂, of rank c, with every pair of columns linearly independent (non-zero and distinct).
- Columns of H must consist of all 2^c 1 non-zero binary vectors of length c, in some order.
- This matrix H has rank of c. Use it as the parity-check matrix, we have a code C with these parameters. This code is called the **binary Hamming code** H_n of length n = 2^c 1.

- Example 7.32
 - H_3 has the parity checking matrix $H = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$
 - H₃ is R₃ !!!
- Note: The rate of H_n will approaches to 1.

$$R=\frac{k}{n}=\frac{2^c-1-c}{2^c-1}\to 1$$

- Nearest neighbor decoding with H_n
 - The receiver computes $s = vH^T$, called the syndrome of v. If s = 0, the receiver decodes v as $\Delta(v) = v$, and if $s = c_i^T$ (the *i*-th column of H) then $\Delta(v) = v e_i$.

- Example 7.33
 - Let us use H_7 , with parity-check matrix

$$H = \begin{pmatrix} 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$

- Suppose that u = 1101001 is sent, and v = 1101101 is received, so the error-pattern is $e = e_5$.
- The syndrome is $s = vH^T$ =100, which is the transpose c_5^T of the fifth column of H.
- This indicates an error in the fifth position, so changing this entry of v we get $\Delta(v) = 1101001 = u$

 Using the parity checking matrix as below, then a nonzero syndrome is the binary representation of the position *i* where a single error *e*, has appeared

$$H = \begin{pmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}$$
$$1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7$$

- Example 7.34
 - Verify this using example 7.33
 - Note: need to perform a column permutation (1362547) to change between the two representations.

Construction of perfect 1-error-correcting linear codes for prime-powers q > 2

• We take the columns of H to be

$$n = \frac{q^c - 1}{q - 1} = 1 + q + q^2 + \dots + q^{c - 1}$$

pairwise linearly independent vectors of length c over F_q .

- The resulting linear code has length n, dimension k = n c, and minimum distance d = 3, so t = 1.
- As in the binary case, $R \rightarrow 1$ as $c \rightarrow \infty$, but $\Pr_{E} \not\rightarrow 0$.
- Example 7.35
 - If q = 3 and c = 2, then n = 4 and k = 2. Then a perfect 1-errorcorrecting linear [4, 2]-code over F₃ can be given by H. H = ?

7.5 The Golay Codes

• Skip this section

7.6 The Standard Array

- Suppose C ⊆ V is a linear code. The standard array of C is essentially a table in which the elements of V are arranged into cosets of the subspace C.
- Suppose that $C = {\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_M}$ is a linear code with $M = q^k$ elements. Assume $u_1 = 0$.
- For *i* = 1,2,3, ..., let the *i*-th row consist of the elements of the coset of *C*.

 $\mathbf{v}_i + \mathcal{C} = \{\mathbf{v}_i + \mathbf{u}_1 \ (= \mathbf{v}_i), \ \mathbf{v}_i + \mathbf{u}_2, \ \dots, \ \mathbf{v}_i + \mathbf{u}_M\}$

where $wt(v_i) \le wt(v_{i+1})$, $i = 1, ..., q^{n-k} - 1$ and v_i is not in the previous (< *i*) rows.

• A horizontal line across the array, immediately under the last row to satisfy $wt(v_i) \le t$, where $t = \lfloor (d-1)/2 \rfloor$.

The Standard Array

- Example 7.39
 - Let C be the binary repetition code R₄ of length n = 4, so q = 2, k = 1 and the code-words are u₁ = 0 = 0000 and u₂ = 1 = 1111
 - There are $q^{n-k} = 8$ cosets of C in V, each with two vectors
 - So, standard array has 8 rows:

 $v_1 + C, v_2 + C, \dots, v_8 + C$

 $v_1 = has weight 0$ $v_2 to v_5 has weight 1$ $v_6, v_7, v_8 has weight 2$

$v_1 + C$	0000	1111
$v_2 + C$	1000	0111
$v_3 + C$	0100	1011
$v_4 + C$	0010	1101
$v_{5} + C$	0001	1110
$v_6 + C$	1100	0011
$v_7 + C$	1010	0101
$v_{8} + C$	1001	0110

The Standard Array

- Lemma 7.40
 - a) If v is in the j-th column of the standard array (that is, $v = v_i + u_j$ for some i), then u_j is a nearest code-word to v.
 - b) If, in addition, v is above the line in the standard array (that is, $wt(v_i) \le t$), then u_j is the unique nearest code-word to v.
- Thus C is perfect if and only if the entire standard array is above the line
 - The sphere $S_t(u_j)$ of radius t about u_j is the part of the j-th column above the line.

The Standard Array

- Decoding rule
 - Suppose that a code-word $u \in C$ is transmitted, and $v = u + e \in V$ is received, where e is the error-pattern.
 - The receiver finds $v = v_i + u_j$ in the standard array, and decides that $\Delta(v) = u_j$ (u_j is header of a column)
- Note this rule gives correct decoding if and only if the error-pattern is a coset leader ($e = v_i$).
- Example 7.41
 - Let $C = R_4$. Suppose that u = 1111 is sent, and the error-pattern is e = 0100, v = ? And $u_i = ?$
 - How when *e* = 0110?

7.7 Syndrome Decoding

• If *H* is a parity-check matrix for a linear code $C \subseteq V$ then the syndrome of a vector $v \in V$ is the vector

$$\mathbf{s} = \mathbf{v}H^{\mathrm{T}} \in F^{n-k} \tag{7.8}$$

- Lemma 7.42
 - Let C be a linear code, with parity-check matrix H, and let $v, v' \in V$ have syndromes s, s'. Then v and v' lie in the same coset of C if and only if s = s'.
- This shows that
 - A vector $v \in V$ lies in the *i*-th row of the standard array if and only if it has the same syndrome as v_i , that is, $vH^T = v_iH^T$.
- A syndrome table can be created with each row having a coset leader v_i and its syndrome s_i (= $v_i H^T$).

Syndrome Decoding

- Example 7.43 \mathbf{v}_i Si • Let C be the binary repetition code R_4 , 0000 000 with standard array as given in Example 10001007.39, so the coset leaders v_i are the 0100010words in its first column. 001 Apply the parity-check matrix given in 0010Example 7.11. 0001111 $H = \begin{pmatrix} 1 & -1 \\ 1 & -1 \\ & 1 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ & 1 & 1 \end{pmatrix}$ 11001101010 101 1001 011
 - Compute syndrome s_i for each v_i .

Syndrome Decoding

- The syndrome decoding proceeds as follows
 - Given any received \boldsymbol{v} , compute its syndrome $\boldsymbol{s} = \boldsymbol{v}H^T$.
 - Find s in the second column of the syndrome table, say $s = s_i$, the *i*-th entry.
 - If v_i is the coset leader corresponding to s_i in the table, Then decode v as $u_i = v - v_i$. I.e.

 $\Delta(\mathbf{v}) = \mathbf{u}_j = \mathbf{v} - \mathbf{v}_i$, where $\mathbf{v}H^{\mathrm{T}} = \mathbf{s}_i$

- Example 7.44
 - As in Example 7.43. v = 1101 is received. its syndrome $s = vH^T = 001$. This is s_4 in the syndrome table, so we decode v as $\Delta(\mathbf{v}) = \mathbf{v} \mathbf{v}_4 = 1101 0010 = 1111$