Coding and Information Theory Chapter 6: Error-correcting Codes

Xuejun Liang
2019 Fall

Chapter 6: Error-correcting Codes

1. Introductory Concepts
2. Examples of Codes
3. Minimum Distance
4. Hamming's Sphere-packing Bound
5. The Gilbert-Varshamov Bound
6. Hadamard Matrices and Codes

The aim of this chapter

- Is to construct codes C with good transmissionrates R and low error-probabilities Pr_{E}, as promised by Shannon's Fundamental Theorem.
- This part of the subject goes under the name of Coding Theory (or Error-correcting Codes), as opposed to Information Theory.
- Will concentrate on a few simple examples to illustrate some of the methods used to construct more advanced codes

Finite Field and Linear Space

- A set F is a Field
- At least two elements $0,1 \in F$
- Two operations + and \times on F
- Associative and commutative
- Operation \times distributes over +
- 0 is the identity for + and 1 for \times
- Additive inverse and multiplicative inverse

Finite Fields

Goal: Given a prime p and a positive integer n , construct a field with p^{n} elements.

Definitions and Notations:

$\mathrm{Z}_{\mathrm{p}}[\mathrm{x}]$: all polynomials in the indeterminate x with coefficients in Z_{p}. $\operatorname{deg}(f)$: the degree of $f\left(f \in Z_{p}[x]\right)$ is the largest exponent in a term of f.
$\mathrm{f} \mid \mathrm{g}: \mathrm{f}$ divides $\mathrm{g}\left(\mathrm{f}, \mathrm{g} \in \mathrm{Z}_{\mathrm{p}}[\mathrm{x}]\right.$), if $\mathrm{g}=\mathrm{f} \cdot \mathrm{h}$ for some $\mathrm{h} \in \mathrm{Z}_{\mathrm{p}}[\mathrm{x}]$.
$g \equiv h(\bmod f): f \mid(g-h)\left(f, g, h \in Z_{p}[x]\right.$ and $\left.\operatorname{def}(f) \geq 1\right)$
$Z_{p}[x] /(f)$: all congruence classes modulo f in $Z_{p}[x]\left(f \in Z_{p}[x]\right)$.
$\mathrm{Z}_{\mathrm{p}}[\mathrm{x}] /(\mathrm{f})$ is equipped with,+ x and $\left|\mathrm{Z}_{\mathrm{p}}[\mathrm{x}] /(\mathrm{f})\right|=\mathrm{p}^{\mathrm{n}}$, where $\mathrm{n}=\operatorname{deg}(\mathrm{f})$

Finite Fields (Cont.)

Example: $\mathrm{Z}_{3}[\mathrm{x}] /\left(\mathrm{x}^{2}-1\right)$
List all the elements in forms $a_{0}+a_{1} x, a_{0}, a_{1} \in Z_{3}$.
List a complete multiplication table.
In general $\mathrm{Z}_{\mathrm{p}}[\mathrm{x}] /(\mathrm{f})$ is a ring, not a field.
Definition: A polynomial f in $Z_{p}[x]$ is called irreducible, if f can not be written as $f=f_{1} \cdot f_{2}$ where $\operatorname{deg}\left(f_{1}\right)>0$ and $\operatorname{deg}\left(f_{2}\right)>0$.

Fact: If f in $\mathrm{Z}_{\mathrm{p}}[\mathrm{x}]$ is irreducible polynomial of degree n , then $\mathrm{Z}_{\mathrm{p}}[\mathrm{x}] /(\mathrm{f})$ is a field with p^{n} elements.

Notation: $\mathrm{Z}_{\mathrm{p}}[\mathrm{x}] /(\mathrm{f})$ is called Galois field and is denoted by $\mathrm{GF}\left(\mathrm{p}^{\mathrm{n}}\right)$.

Linear (vector) space: Definition

A linear space V over a field F is a set whose elements are called vectors and where two operations, addition and scalar multiplication, are defined:

1. addition, denoted by + , such that to every pair $x, y \in \vee$ there correspond a vector $x+y \in V$, and

- $x+y=y+x$,
- $x+(y+z)=(x+y)+z, x, y, z \in V$;
$(X,+)$ is a group, with neutral element denoted by 0 and inverse denoted by,$- x+(-x)=x-x=0$.

2. scalar multiplication of $x \in V$ by elements $k \in F$, denoted by $k x \in V$, and

- $k(a x)=(k a) x$,
- $k(x+y)=k x+k y$,
- $(k+a) x=k x+a x, x, y \in V, k, a \in F$.

Moreover $1 x=x$ for all $x \in V, 1$ being the unit in F.

- Example: V_{4} of all 4-tuples over $\mathrm{Z}_{2}(\mathrm{GF}(2))$.

Subspace and Linearly independent

- Subspace: $\mathrm{S} \subseteq \mathrm{V}$
- addition and scalar multiplication are closed in S
- Linear combination
- $a_{1} v_{1}+a_{2} v_{2}+\ldots+a_{n} v_{n}$
- Linearly independent of $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}$
- If $a_{1} v_{1}+a_{2} v_{2}+\ldots+a_{n} v_{n}=0$ then $a_{1}=0, a_{2}=0, \ldots, a_{n}=0$.
- Linearly dependent of $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}$
- There are $a_{1}, a_{2}, \ldots, a_{n}$ (not all 0 's) such that $a_{1} v_{1}+a_{2} v_{2}+\ldots+a_{n} v_{n}=0$
- Example 4.11: determine if the vectors are linearly dependent or not
- Example 4.12: determine if the vectors are linearly dependent or not

Basis and Dimension

- Basis (or Base)
- Basis: independent vectors that can span the whole vector space.
- Any vector is a linear combination of basis vectors.
- Dimension
- Number of vectors within the basis
- Example: V_{n} is n -dimension
- Example 4.13: determine a basis and the dimension of the subspace in V_{4} over Z_{2} consisting of vectors:
(0000) (1100) (1010) (0001)
(0110) (1101) (1011) (0111)

Orthogonality and Dual Space

- Orthogonality
- Inner product of $\mathbf{u}=\left(u_{0}, u_{1}, \ldots, u_{n-1}\right)$ and $\mathbf{v}=\left(v_{0}, v_{1}, \ldots, v_{n-1}\right)$:

$$
u . v=u_{0} v_{0}+u_{1} v_{1}+\ldots,+u_{n-1} v_{n-1}
$$

- \mathbf{u} and \mathbf{v} are said orthogonal if $\mathbf{u} . \mathbf{v}=0$
- Subspace S and P of V_{n} are said orthogonal if for any $\mathbf{u} \in S$ and any $\mathbf{v} \in P$, we have $\mathbf{u} . \mathbf{v}=0$
- Dual Space
- Subspace S of V_{n} is the dual space (null space) of another subspace P of V_{n} if S and P are orthogonal and $\operatorname{dim}(S)+\operatorname{dim}(P)=n$
- Example 4.14: show S and P are dual each other
- $S=\{(0000$), (1 100) , (1011), (0 111 1)

Raw space and Column Space

- Let G be a $m \times n$ matrix
- All linear combinations of row vectors of G is a subspace of V_{n}, called row vector space of G.
- All linear combinations of column vectors of G is a subspace of V_{m} called column vector space of G.
- The dimension of row vector space is called row rank and the dimension of column vector space is called column rank.
- Row rank and column are always equal, it is called the rank of the matrix.
- Elementary row operations of a matrix
- swap two rows, multiply a row with a scalar, add multiple of a row to another
- Elementary row operations do not change the row rank.

Raw space and Column Space (cont.)

- Example 4.15:
- Determine the row space of matrix $\mathrm{G}=\left(\begin{array}{llllll}1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0\end{array}\right)$
xample 4.16:
- Example 4.16:
- Consider the G in 4.15. Compute a matric G^{\prime} by adding row 3 of G to row 1 of G and then interchanging rows 2 and 3 of G .
- Show that the row space of G^{\prime} is the same as that generated by G .

6.1 Introductory Concepts

- Assume channel Γ has input A and output B, and A $=B=F$, where F is a finite field.
- Note Z_{p} of integers $\bmod (p)$ is a finite field, where p is a prime number.
- Theorem 6.1
a) There is a finite field of order q if and only if $q=p^{e}$ for some prime p and integer $e \geq 1$.
b) Any two finite fields of the same order are isomorphic.

Galois Field

- The essentially unique field of order q is known as the Galois field F_{q} or $G F(q)$.
- When $e=1$, then $q=p$ and $F_{q}=F_{p}=Z_{p}$.
- When $e>1, F_{q}=Z_{p}[x] / f(x)$, where $\mathrm{f}(\mathrm{x})$ is an irreducible polynomial of degree e on the field Z_{p}.
- When $e>1, F_{q}=Z_{p}[\alpha]$, where α is a root of $f(x)$ which an irreducible polynomial of degree e on the field Z_{p}.
- Example 6.2
- The quadratic polynomial $f(x)=x^{2}+x+1$ has no roots in the field Z_{2}.

$$
F_{4}=\left\{a+b \alpha \mid a, b \in \mathbf{Z}_{2}\right\}=\{0,1, \alpha, 1+\alpha\}
$$

Linear Code

- Let F be a field, then the set $V=F^{n}$ of all n-tuples with coordinates in F is an n-dimensional vector space over F.
- the operations are component wise addition and scalar multiplication
- Assume that any code-words in C are of length n
- So C is a subset of the set $V=F^{n}$
- We say that C is a linear code (or a group code) if C is a non-empty linear subspace of V.
- If $\boldsymbol{u}, \boldsymbol{v} \in C$ then $a \boldsymbol{u}+b \boldsymbol{v} \in C$ for all $a, b \in F$

The rate of a code C

- We will always denote $|C|$ by M
- When C is linear we have $\mathrm{M}=q^{k}$, where $k=\operatorname{dim}(C)$ is the dimension of the subspace C.
- We then call C a linear $[n, k]$-code.
- The rate of a code C is $\quad R=\frac{\log _{q} M}{n}$
- So in the case of a linear $[n, k]$-code we have

$$
\begin{align*}
& \begin{array}{l}
\mathrm{k} \text { information digits, carrying the information } \\
\mathrm{n}-\mathrm{k} \text { check digits, confirming or protecting } \\
\text { that information }
\end{array}
\end{align*} \quad R=\frac{k}{n}
$$

Notes

- We will assume that all code-words in C are equiprobable, and that we use nearest neighbor decoding (with respect to the Hamming distance on V).

6.2 Examples of Codes

- Example 6.3: The repetition code R_{n} over F
- the words $u=u u \ldots u \in V=F^{n}$, where $u \in F$, so $\mathrm{M}=$ $|F|=q$.
- If F is a field then R_{n} is a linear code of dimension $k=1$, spanned by the word (or vector) 11... 1
- Example:
- Binary code $R_{3}=\{000,111\}$ as a subset of $V=Z_{2}^{3}$
- R_{n} corrects $\lfloor(n-1) / 2\rfloor$ errors

- R_{n} has rate $R=1 / n \rightarrow 0$ as $n \rightarrow \infty$,

Examples of Codes (Cont.)

- Example 6.4: The parity-check code P_{n} over a field $F=F_{q}$
- all vectors $u=u_{1} u_{2} \ldots u_{n} \in V$ such that $\sum_{i} u_{i}=0$.
- if $n=3$ and $q=2$ then $P_{3}=\{000,011,101,110\}$.
- $M=q^{n-1}$

- $\mathrm{R}=(\mathrm{n}-1) / \mathrm{n}$, so $R \rightarrow 1$ as $n \rightarrow \infty$
- it will detect a single error, but cannot correct it.

Hamming Code

- Example 6.5
- The binary Hamming code H_{7} is a linear code of length n
$=7$ over F_{2}
- 4 bits for data $\mathbf{a}=a_{1} a_{2} a_{3} a_{4}$
- 3 bits for checking
- How to construct the code for a
- Let the code word $\mathbf{u}=u_{1} u_{2} u_{3} u_{4} u_{5} u_{6} u_{7}$
- Bits $u_{3}=a_{1}, u_{5}=a_{2}, u_{6}=a_{3}$, and $u_{7}=a_{4}$
- Bits u_{1}, u_{2}, u_{4} for checking, determined by

$$
\begin{aligned}
& u_{4}+u_{5}+u_{6}+u_{7}=0 \\
& u_{2}+u_{3}+u_{6}+u_{7}=0 \\
& u_{1}+u_{3}+u_{5}+u_{7}=0
\end{aligned}
$$

$$
\begin{gathered}
A B C \\
\mathrm{~A}=4, \mathrm{~B}=2, \mathrm{C}=1
\end{gathered}
$$

Hamming Code (Cont.)

- Example 6.5
- Example: a = 0110

	1	2	3	4	5	6	7
	001	010	011	100	101	110	111
$4\left(s_{1}\right)$				100	100	100	100
$2\left(s_{2}\right)$		010	010			010	010
$1\left(s_{3}\right)$	001		001		001		001
\mathbf{u}	1	1	0	0	1	1	0

$$
\begin{aligned}
& s_{1}=u_{4}+u_{5}+u_{6}+u_{7} \\
& s_{2}=u_{2}+u_{3}+u_{6}+u_{7} \\
& s_{3}=u_{1}+u_{3}+u_{5}+u_{7}
\end{aligned}
$$

- The receiver will compute s_{1}, s_{2}, s_{3}. If they are all zero then the code is no error.
- If not, the binary number $\mathrm{s}_{1} \mathrm{~s}_{2} \mathrm{~s}_{3}$ tells which bit is wrong.
- Now, assume $\mathbf{v}=1110110$ is received with 1-bit error in bit 3 . you will get $s_{1}=0, s_{2}=1$, and $s_{3}=1$. So, $s_{1} s_{2} s_{3}=011=3$.

Hamming Code (Cont.)

- Example 6.5 (Cont.)
- The binary Hamming code H_{7} is a linear code with dimension $\mathrm{k}=4$.
- $M=\left|H_{7}\right|=16=2^{4}$
- It can be generated by

$$
u_{1}=1110000, u_{2}=1001100, u_{3}=0101010, u_{4}=1101001
$$

- which are obtained from

$$
e_{1}=1000, e_{2}=0100, e_{3}=0010, e_{4}=0001
$$

- Note:
- Although the binary codes R_{3} and H_{7} both correct a single error, the rate $R=4 / 7$ of H_{7} is significantly better than the rate $1 / 3$ of R_{3}.

Examples of Codes (Cont.)

- Example 6.6
- Suppose that C is a code of length n over a field F. Then we can form a code of length $n+1$ over F, called the extended code \bar{C}. by
- adjoining an extra digit u_{n+1} to every code-word \boldsymbol{u} $=u_{1} u_{2} \ldots u_{n} \in C$, chosen so that $u_{1}+u_{2}+\cdots+u_{n+1}=0$.
- Clearly $|\bar{C}|=|C|$, and if C is linear then so is \bar{C}, with the same dimension
- Example 6.7
- If C is a code of length n, we can form a punctured code C° of length $n-1$ by
- choosing a coordinate position i, and deleting the symbol u_{i} from each codeword $u_{1} u_{2} \ldots u_{n} \in C$.

6.3 Minimum Distance

- Define the minimum distance of a code C to be

$$
\begin{equation*}
d=d(\mathcal{C})=\min \left\{d\left(\mathbf{u}, \mathbf{u}^{\prime}\right) \mid \mathbf{u}, \mathbf{u}^{\prime} \in \mathcal{C}, \mathbf{u} \neq \mathbf{u}^{\prime}\right\}, \tag{6.3}
\end{equation*}
$$

- (n, M, d)-code
- A code of length n, with M code-words, and with minimum distance d.
- [n, k, d]-code
- A linear ($\mathrm{n}, \mathrm{M}, \mathrm{d}$)-code, of dimension k.
- Our aim is to choose codes C for which d is large, so that Pr_{E} will be small.

Minimum Distance (Cont.)

- Define the weight of any vector $v=v_{1} v_{2} \ldots v_{n} \in$ V to be

$$
\begin{equation*}
\mathrm{wt}(\mathbf{v})=d(\mathbf{v}, \mathbf{0}), \tag{6.4}
\end{equation*}
$$

- It is easy to see that for all $u, u^{\prime} \in V$, we have

$$
d\left(\mathbf{u}, \mathbf{u}^{\prime}\right)=\mathrm{wt}\left(\mathbf{u}-\mathbf{u}^{\prime}\right)
$$

- Lemma 6.8
- If C is a linear code, then its minimum distance d is given by

$$
d=\min \{\operatorname{wt}(\mathbf{v}) \mid \mathbf{v} \in \mathcal{C}, \mathbf{v} \neq 0\} .
$$

Minimum Distance (Cont.)

- We say that a code C corrects t errors, or is \boldsymbol{t}-errorcorrecting, if, whenever a code-word $u \in C$ is transmitted and is then received with errors in at most t of its symbols, the resulting received word v is decoded correctly as u.
- Equivalently, whenever $u \in C$ and $v \in V$ satisfy $\mathrm{d}(u$, $v) \leq t$, the decision rule Δ gives $\Delta(v)=u$.
- Example 6.9
- A repetition code R_{3} corrects one error, but not two.

Minimum Distance (Cont.)

- If u is sent and v is received, we call the vector $e=v-u$ the error pattern.
- A code corrects t errors if and only if it can correct all errorpatterns $e \in V$ of weight $\mathrm{wt}(e) \leq t$.
- Theorem 6.10
- A code C of minimum distance d corrects t errors if and only if $d \geq 2 t+1$. (Equivalently, C corrects up to $\left[\frac{d-1}{2}\right]$ errors.)
- Example 6.11
- A repetition code R_{n} of length n has minimum distance $d=n$, since $d\left(u, u^{\prime}\right)=n$ for all $u \neq u^{\prime}$ in R_{n}. This code therefore corrects $t=\lfloor(n-1) / 2\rfloor$ errors.

Minimum Distance (Cont.)

- Example 6.12
- Exercise 6.3 shows that the Hamming code H_{7} has minimum distance $\mathrm{d}=3$, so it has $t=1$ (as shown in §6.2). Similarly, $\overline{H_{7}}$ has $\mathrm{d}=4$ (by Exercise 6.4), so this code also has $t=1$.
- Example 6.13
- A parity-check code P_{n} of length n has minimum distance $\mathrm{d}=2$; for instance, the code-words $\mathrm{u}=110$... 0 and $\mathrm{u}^{\prime}=0=00 \ldots 0$ are distance 2 apart, but no pair are distance 1 apart. It follows that the number of errors corrected by P_{n} is 0 .

Minimum Distance (Cont.)

- C detects d - 1 errors
- Example 6.14
- The codes R_{n} and P_{n} have $d=n$ and 2 respectively, so R_{n} detects n-1 errors, while P_{n} detects one; $\overline{H_{7}}$ has $d=$ 3 , so it detects two errors.

6.4 Hamming's Sphere-packing Bound

- Define Hamming's sphere to be

$$
\begin{equation*}
S_{t}(\mathbf{u})=\{\mathbf{v} \in \mathcal{V} \mid d(\mathbf{u}, \mathbf{v}) \leq t\} \quad(\mathbf{u} \in \mathcal{C}) \tag{6.5}
\end{equation*}
$$

- We have

$$
\begin{equation*}
\left|S_{t}(\mathbf{u})\right|=1+\binom{n}{1}(q-1)+\binom{n}{2}(q-1)^{2}+\cdots+\binom{n}{t}(q-1)^{t} \tag{6.6}
\end{equation*}
$$

- Theorem 6.15
- Let C be a q-ary t-error-correcting code of length n, with M code-words. Then

$$
M\left(1+\binom{n}{1}(q-1)+\binom{n}{2}(q-1)^{2}+\cdots+\binom{n}{t}(q-1)^{t}\right) \leq q^{n}
$$

Sphere-packing Bound (Cont.)

- Example 6.16
- If we take $q=2$ and $t=1$ then Theorem 6.15 gives
$M \leq 2^{n} /(1+n)$, so $M \leq\left\lfloor 2^{n} /(1+n)\right\rfloor$
since M must be an integer. Thus $M \leq 1,1,2,3,5,9,16, \ldots$ for $n=1,2,3,4,5,6,7, \ldots$
- Corollary 6.17
- Every t-error-correcting linear [n, k]-code C over F_{q} satisfies

$$
\sum_{i=0}^{t}\binom{n}{i}(q-1)^{i} \leq q^{n-k}
$$

Sphere-packing Bound (Cont.)

- Corollary 6.17 therefore gives us a lower bound on the number of check digits ($\mathrm{n}-\mathrm{k}$) required to correct t errors

$$
n-k \geq \log _{q}\left(\sum_{i=0}^{t}\binom{n}{i}(q-1)^{i}\right)
$$

- A code C is perfect if it attains equality in Theorem 6.15 (equivalently in Corollary 6.17, in the case of a linear code).

Sphere-packing Bound (Cont.)

- Example 6.18
- The binary repetition code R_{n} of odd length n is perfect!
- However, when n is even or $q>2$, R_{n} is not perfect.

- Example 6.19
- The binary Hamming code H_{7} is perfect.
- If C is any binary code then Theorem 6.15 gives

$$
2^{n} \geq M\binom{n}{t}=2^{n R}\binom{n}{t}
$$

Sphere-packing Bound (Cont.)

- Thus $2^{n(1-R)} \geq\binom{ n}{t}$
- So taking logarithms gives

$$
1-R \geq \frac{1}{n} \log _{2}\binom{n}{t}
$$

- Apply Stirling's approximation $n!\sim(n / e)^{n} \sqrt{2 \pi n}$ to the three factorials in $\binom{n}{t}=n!/ t!(n-t)$!
- We get the Hamming's upper bound on the proportion t / n of errors corrected by binary codes of rate R, as $n \rightarrow \infty$.

$$
\begin{equation*}
H_{2}\left(\frac{t}{n}\right) \leq 1-R \tag{6.7}
\end{equation*}
$$

where H_{2} is the binary entropy function.

6.5 The Gilbert-Varshamov Bound

- Let $A_{q}(n, d)$ denote the greatest number of codewords in any q-ary code of length n and minimum distance d, where $d \leq n$. Let $t=\lfloor(d-1) / 2\rfloor$, we have (by Theorem 6.10)

$$
A_{q}(n, d)\left(1+\binom{n}{1}(q-1)+\binom{n}{2}(q-1)^{2}+\cdots+\binom{n}{t}(q-1)^{t}\right) \leq q^{n}
$$

- Example 6.20
- If $q=2$ and $d=3$ then $t=1$, so as in Example 6.16 we find that $A_{2}(n, 3) \leq\left[2^{n} /(n+1)\right\rfloor$. Thus for $\mathrm{n}=3,4,5$, $6,7, \ldots$ we have $A_{2}(n, 3) \leq 2,3,5,9,16, \ldots$

The Gilbert-Varshamov Bound (Cont.)

- Theorem 6.21
- If $q \geq 2$ and $n \geq d \geq 1$ then

$$
A_{q}(n, d)\left(1+\binom{n}{1}(q-1)+\binom{n}{2}(q-1)^{2}+\cdots+\binom{n}{d-1}(q-1)^{d-1}\right) \geq q^{n}
$$

- Example 6.22
- If we take $q=2$ and $d=3$ again (so that $t=1$), then for all $n \geq 3$, we have

$$
A_{2}(n, 3)\left(1+n+\frac{n(n-1)}{2}\right) \geq 2^{n}
$$

- This gives $A_{2}(n, 3) \geq 2,2,2,3,5, \ldots$ for $n=3,4,5,6,7$,

The Gilbert-Varshamov Bound (Cont.)

- Two bounds on R

$$
R \geq 1-H_{2}\left(\frac{d-1}{n}\right) .
$$

where $d \leq\lfloor n / 2\rfloor$
$R \leq 1-H_{2}\left(\frac{t}{n}\right) \quad$ See (6.7)
where $t=\lfloor(d-1) / 2\rfloor$

* Putting $\lambda=Q$, Exercise 5.7 gives

$$
\sum_{i \leq n Q}\binom{n}{i} \leq 2^{n H(Q)}
$$

for $Q<1 / 2$

6.6 Hadamard Matrices and Codes

- A real $n \times n$ matrix $H=\left(h_{i j}\right)$ (of order n) is called a Hadamard matrix, if it satisfies
a) each $h_{i j}= \pm 1$, and
b) distinct rows r_{i}, of H are orthogonal, that is, $r_{i} \cdot r_{j}=0$ for all $i \neq j$.
- Note: $|\operatorname{det}(H)|=n^{n / 2}$
- Example 6.23
- The matrices $\mathrm{H}=(1)$ and $\left(\begin{array}{ll}1 & 1 \\ 1 & -\end{array}\right)$ are Hadamard matrices of order 1 and 2 , with $|\operatorname{det} H|=1$ and 2 respectively.

Hadamard Matrices (Cont.)

- Lemma 6.24
- Let H be a Hadamard matrix of order n, and let

$$
H^{\prime}=\left(\begin{array}{cc}
H & H \\
H & -H
\end{array}\right)
$$

Then H^{\prime} is a Hadamard matrix of order $2 n$.

- Corollary 6.25
- There is a Hadamard matrix of order 2^{m} for each integer $m \geq 0$.
- Example 6.26
- The Hadamard matrices of order 2^{m} obtained by this method are called Sylvester matrices. For instance, taking $m=1$ or $2, \ldots \ldots$.

Hadamard Matrices and Codes

- Lemma 6.27
- If there is a Hadamard matrix H of order $n>1$, then n is even.
- Lemma 6.28
- If there is a Hadamard matrix H of order $n>2$, then n is divisible by 4.
- Theorem 6.29
- Each Hadamard matrix H of order n gives rise to a binary code of length n, with $M=2 n$ code-words and minimum distance $d=n / 2$.
- Any code C constructed as in Theorem 6.29 is called a Hadamard code of length n.

Hadamard Codes

- If n is not a power of 2 then neither is $2 n$, so a Hadamard code of such a length n cannot be linear
- The transmission rate of any Hadamard code of length n is

$$
R=\frac{\log _{2}(2 n)}{n}=\frac{1+\log _{2} n}{n} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

- The number of errors corrected (if $n>2$) is

$$
t=\left\lfloor\frac{d-1}{2}\right\rfloor=\left\lfloor\frac{n-2}{4}\right\rfloor=\frac{n}{4}-1
$$

- so the proportion of errors corrected is

$$
\frac{t}{n}=\frac{1}{4}-\frac{1}{n} \rightarrow \frac{1}{4} \quad \text { as } \quad n \rightarrow \infty
$$

