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The aim of this chapter

• Is to construct codes with good transmission-
rates R and low error-probabilities , as 
promised by Shannon’s Fundamental Theorem.

• This part of the subject goes under the name of Coding 
Theory (or Error-correcting Codes), as opposed to 
Information Theory.

• Will concentrate on a few simple examples to 
illustrate some of the methods used to construct 
more advanced codes



Finite Field and Linear Space

• A set is a Field
• At least two elements 0, 1 
• Two operations + and  on 
• Associative and commutative
• Operation  distributes over + 
• 0 is the identity for + and 1 for 
• Additive inverse and multiplicative inverse
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Finite Fields

Goal: Given a prime p and a positive integer n, construct a field 
with pn elements.

Definitions and Notations: 
Zp[x] : all polynomials in the indeterminate x with coefficients in Zp.

deg(f) : the degree of f (f  Zp[x]) is the largest exponent in a term of f.

f | g : f divides g (f, g  Zp[x]), if g = f ·h for some h  Zp[x].

g  h (mod f ) : f | (g – h) (f, g, h  Zp[x] and def(f)1)

Zp[x]/(f) : all congruence classes modulo f in Zp[x] (f  Zp[x]). 

Zp[x]/(f) is equipped with +, and | Zp[x]/(f) | = pn, where n=deg(f)
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Finite Fields (Cont.)

Example: Z3[x]/(x2-1)
List all the elements in forms a0+ a1x, a0,a1Z3.
List a complete multiplication table.

In general Zp[x]/(f) is a ring, not a field.

Definition: A polynomial f in Zp[x] is called irreducible, if f can 
not be written as f = f1·f2 where deg(f1)>0 and deg(f2)>0.

Fact: If f in Zp[x] is irreducible polynomial of degree n, then 
Zp[x]/(f) is a field with pn elements. 

Notation: Zp[x]/(f) is called Galois field and is denoted by GF(pn).



Linear (vector) space: Definition

A linear space V over a field F is a set whose elements are 
called vectors and where two operations, addition and scalar 
multiplication, are defined: 
1. addition, denoted by +, such that to every pair x, y V there 

correspond a vector x + y V, and 
• x + y = y + x, 
• x + (y + z) = (x + y) + z, x, y, z V; 
(X, +) is a group, with neutral element denoted by 0 and inverse 
denoted by −, x + (−x) = x − x = 0.

2. scalar multiplication of x V by elements k F, denoted by kx V, and 
• k(ax) = (ka)x, 
• k(x + y) = kx + ky, 
• (k + a)x = kx + ax, x, y V, k, a F.
Moreover 1x = x for all x V, 1 being the unit in F.

• Example: V4 of all 4-tuples over Z2 (GF(2)).



Subspace and Linearly independent

• Subspace: S  V
• addition and scalar multiplication are closed in S

• Linear combination
• a1v1+a2v2+ … + anvn
• Linearly independent of v1, v2, …, vn

• If a1v1+a2v2+ … + anvn = 0 then a1=0, a2=0, …, an=0.
• Linearly dependent of v1, v2, …, vn

• There are a1, a2, …, an (not all 0’s) such that a1v1+a2v2+ … + anvn = 0 

• Example 4.11: determine if the vectors are linearly 
dependent or not

• Example 4.12: determine if the vectors are linearly 
dependent or not



Basis and Dimension

• Basis (or Base)
• Basis: independent vectors that can span the whole 

vector space. 
• Any vector is a linear combination of basis vectors.

• Dimension
• Number of vectors within the basis
• Example: Vn is n-dimension

• Example 4.13: determine a basis and the dimension of 
the subspace in V4 over Z2 consisting of vectors:

(0 0 0 0)   (1 1 0 0)   (1 0 1 0) (0 0 0 1)
(0 1 1 0)   (1 1 0 1)   (1 0 1 1) (0 1 1 1)



Orthogonality and Dual Space

• Orthogonality
• Inner product of u = (u0, u1, …, un-1) and v = (v0, v1, …, vn-1):

u.v = u0v0 + u1v1 + …, + un-1vn-1
• u and v are said orthogonal if u.v = 0
• Subspace S and P of Vn are said orthogonal if for any u  S 

and any v  P, we have u.v = 0
• Dual Space

• Subspace S of Vn is the dual space (null space) of another 
subspace P of Vn if S and P are orthogonal and

dim(S)+dim(P) = n

• Example 4.14: show S and P are dual each other
• S = {(0 0 0 0), (1 1 0 0), (1 0 1 1), (0 1 1 1)
• P = {(0 0 0 0), (1 1 0 1), (1 1 1 0), (0 0 1 1)



Raw space and Column Space

• Let G be a m×n matrix
• All linear combinations of row vectors of G is a subspace of Vn, 

called row  vector space of G.
• All linear combinations of column vectors of G is a subspace 

of Vm called column vector space of G.
• The dimension of row vector space is called row rank and the 

dimension of column vector space is called column rank.
• Row rank and column are always equal, it is called the rank of 

the matrix.
• Elementary row operations of a matrix

• swap two rows, multiply a row with a scalar, add multiple of a 
row to another

• Elementary row operations do not change the row rank.



Raw space and Column Space (cont.)

• Example 4.15: 
• Determine the row space of matrix

• Example 4.16:
• Consider the G in 4.15. Compute a matric G’ by adding row 3 

of G to row 1 of G and then interchanging rows 2 and 3 of G. 
• Show that the row space of G’ is the same as that generated 

by G.

G=



6.1 Introductory Concepts

• Assume channel has input A and output B, and A 
= B = F, where F is a finite field.

• Note of integers mod ( ) is a finite field, where 
is a prime number.

• Theorem 6.1
a) There is a finite field of order if and only if 

for some prime and integer .
b) Any two finite fields of the same order are isomorphic.



Galois Field

• The essentially unique field of order is known as 
the Galois field or .

• When = 1, then = and .
• When > 1, , where f(x) is an 

irreducible polynomial of degree on the field . 
• When > 1, , where is a root of which 

an irreducible polynomial of degree on the field . 

• Example 6.2
• The quadratic polynomial has no 

roots in the field .      



Linear Code

• Let be a field, then the set of all n-tuples 
with coordinates in is an n-dimensional vector 
space over 

• the operations are component wise addition and scalar 
multiplication

• Assume that any code-words in are of length 
• So C is a subset of the set 

• We say that is a linear code (or a group code) if 
is a non-empty linear subspace of .

• If u, v then for all 



The rate of a code 

• We will always denote by M
• When is linear we have M = , where = dim( ) 

is the dimension of the subspace .
• We then call a linear [ , ]-code.

• The rate of a code is

• So in the case of a linear [ , ]-code we have

k information digits, carrying the information 
n - k check digits, confirming or protecting 
that information



Notes

• We will assume that all code-words in are 
equiprobable, and that we use nearest neighbor 
decoding (with respect to the Hamming distance on ).



6.2 Examples of Codes

• Example 6.3: The repetition code over 
• the words , where , so M = 

I I = .
• If is a field then is a linear code of dimension = 1, 

spanned by the word (or vector) 11. . . 1
• Example:

• Binary code ଷ = {000, 111} 
as a subset of ଶ

ଷ

• corrects errors
• has rate = as ,



Examples of Codes (Cont.)

• Example 6.4: The parity-check code over a field 

• all vectors such that .
• if = 3 and = 2 

then ={000, 011,101, 110}.

•
• R = (n - 1)/n, so as 
• it will detect a single error, but cannot correct it.



• Example 6.5
• The binary Hamming code is a linear code of length 

= 7 over 
• 4 bits for data a = a1a2a3a4

• 3 bits for checking
• How to construct the code for a

• Let the code word u = u1u2u3u4u5u6u7

• Bits u3 = a1, u5 = a2, u6 = a3, and u7 = a4

• Bits u1, u2, u4 for checking, determined by

Hamming Code

ସ ହ  

ଶ ଷ  

ଵ ଷ ହ 

A=4, B=2, C=1



• Example 6.5
• Example: a = 0110

• The receiver will compute s1, s2, s3. If they are all zero then 
the code is no error.

• If not, the binary number s1s2s3 tells which bit is wrong.
• Now, assume v = 1110110 is received with 1-bit error in bit 3. 

you will get s1= 0, s2= 1, and s3 = 1. So, s1s2s3 = 011 = 3. 

Hamming Code (Cont.)

ଵ ସ ହ  

ଶ ଶ ଷ  

ଷ ଵ ଷ ହ 

1 2 3 4 5 6 7

001 010 011 100 101 110 111

4 (s1) 100 100 100 100

2 (s2) 010 010 010 010

1 (s3) 001 001 001 001

u 1 1 0 0 1 1 0



• Example 6.5 (Cont.)
• The binary Hamming code is a linear code with 

dimension k = 4. 
• 

ସ

• It can be generated by 
u1 = 1110000, u2 = 1001100, u3 = 0101010, u4 = 1101001

• which are obtained from 
e1 = 1000, e2 = 0100, e3 = 0010, e4 = 0001

• Note:
• Although the binary codes and both correct a 

single error, the rate R = 4/7 of is significantly better 
than the rate 1/3 of .

Hamming Code (Cont.)



Examples of Codes (Cont.)
• Example 6.6

• Suppose that is a code of length over a field . Then 
we can form a code of length n + 1 over , called the 
extended code . by

• adjoining an extra digit ାଵ to every code-word 
= ଵ ଶ  chosen so that ଵ ଶ ାଵ .

• Clearly , and if is linear then so is , with the same 
dimension

• Example 6.7
• If is a code of length , we can form a punctured code

of length - 1 by
• choosing a coordinate position and deleting the symbol 

from each codeword ଵ ଶ  .



6.3 Minimum Distance

• Define the minimum distance of a code to be

• (n, M, d)-code
• A code of length , with code-words, and with 

minimum distance 

• [n, k, d]-code
• A linear (n, M, d)-code, of dimension .

• Our aim is to choose codes for which is large, 
so that PrE will be small.



Minimum Distance (Cont.)

• Define the weight of any vector 
to be

• It is easy to see that for all , we have

• Lemma 6.8
• If is a linear code, then its minimum distance is 

given by



Minimum Distance (Cont.)

• We say that a code corrects errors, or is -error-
correcting, if, whenever a code-word is 
transmitted and is then received with errors in at 
most of its symbols, the resulting received word 
is decoded correctly as .

• Equivalently, whenever and v satisfy d( , 
) , the decision rule gives ( ) = .

• Example 6.9
• A repetition code R3 corrects one error, but not two.



Minimum Distance (Cont.)

• If is sent and is received, we call the vector = -
the error pattern.

• A code corrects errors if and only if it can correct all error-
patterns of weight wt( ) .

• Theorem 6.10
• A code of minimum distance corrects errors if and only 

if 2 + 1. (Equivalently, corrects up to ௗିଵ

ଶ
errors.)

• Example 6.11
• A repetition code Rn of length n has minimum distance d = n, 

since d(u, u’) = n for all u u' in Rn. This code therefore 
corrects t = errors.



Minimum Distance (Cont.)

• Example 6.12
• Exercise 6.3 shows that the Hamming code has 

minimum distance d = 3, so it has = 1 (as shown in 
§6.2). Similarly, has d = 4 (by Exercise 6.4), so this 
code also has = 1.

• Example 6.13
• A parity-check code of length has minimum 

distance d = 2; for instance, the code-words u =110 ... 0 
and u’ = 0 = 00 . . . 0 are distance 2 apart, but no pair are 
distance 1 apart. It follows that the number of errors 
corrected by is 0. 



Minimum Distance (Cont.)

• detects d - 1 errors
• Example 6.14

• The codes and have = and 2 respectively, so 
detects n-1 errors, while detects one; has = 

3, so it detects two errors.



6.4 Hamming's Sphere-packing 
Bound
• Define Hamming's sphere to be

• We have 

• Theorem 6.15
• Let be a -ary -error-correcting code of length , with 

M code-words. Then



Sphere-packing Bound (Cont.)

• Example 6.16
• If we take = 2 and = 1 then Theorem 6.15 gives 

, so 
since must be an integer. Thus

1, 1, 2, 3, 5, 9, 16, ... for n = 1, 2, 3, 4, 5, 6, 7, ...

• Corollary 6.17
• Every -error-correcting linear [n, k]-code over 

satisfies



Sphere-packing Bound (Cont.)

• Corollary 6.17 therefore gives us a lower bound on 
the number of check digits (n-k) required to correct 

errors

• A code is perfect if it attains equality in Theorem 
6.15 (equivalently in Corollary 6.17, in the case of a 
linear code).



• Example 6.19
• The binary Hamming code is perfect.

• If is any binary code then Theorem 6.15 gives

Sphere-packing Bound (Cont.)

• Example 6.18
• The binary repetition code of 

odd length is perfect! 
• However, when is even or , 

is not perfect.



Sphere-packing Bound
(Cont.)
• Thus 

• So taking logarithms gives

• Apply Stirling's approximation                                 

• We get the Hamming's upper bound on the proportion 
of errors corrected by binary codes of rate , as .

where is the binary entropy function.

(6.7)



6.5 The Gilbert-Varshamov Bound

• Let denote the greatest number of code-
words in any -ary code of length and minimum 
distance , where . Let , we 
have (by Theorem 6.10)

• Example 6.20
• If = 2 and = 3 then = 1, so as in Example 6.16 we 

find that . Thus for n = 3, 4, 5, 
6, 7, ... we have 2, 3, 5, 9, 16, ...



The Gilbert-Varshamov Bound (Cont.)

• Theorem 6.21
• If and then

• Example 6.22
• If we take = 2 and = 3 again (so that = 1), then for 

all n 3, we have

• This gives 2, 2, 2, 3, 5, ... for = 3, 4, 5, 6, 7, 



The Gilbert-Varshamov Bound (Cont.)

• Two bounds on R

*
where 

where 

* Putting , Exercise 5.7 gives

for ଵ
ଶ

See (6.7)



6.6 Hadamard Matrices and Codes

• A real x matrix (of order ) is called a 
Hadamard matrix, if it satisfies

a) each = ±1, and
b) distinct rows , of are orthogonal, that is, 

for all .

• Note: 
• Example 6.23

• The matrices H = (1) and are Hadamard matrices 
of order 1 and 2, with = 1 and 2 respectively.



Hadamard Matrices (Cont.)

• Lemma 6.24
• Let be a Hadamard matrix of order , and let

Then ' is a Hadamard matrix of order 2 .
• Corollary 6.25

• There is a Hadamard matrix of order 2m for each integer 
.

• Example 6.26
• The Hadamard matrices of order 2m obtained by this 

method are called Sylvester matrices. For instance, 
taking m = 1 or 2, ……

ᇱ



Hadamard Matrices and Codes

• Lemma 6.27
• If there is a Hadamard matrix H of order > 1, then is even.

• Lemma 6.28
• If there is a Hadamard matrix H of order > 2, then is 

divisible by 4.

• Theorem 6.29
• Each Hadamard matrix of order gives rise to a binary 

code of length , with code-words and minimum 
distance = /2.

• Any code constructed as in Theorem 6.29 is called a 
Hadamard code of length .



Hadamard Codes

• If is not a power of 2 then neither is 2 , so a 
Hadamard code of such a length cannot be linear

• The transmission rate of any Hadamard code of length 
is

• The number of errors corrected (if > 2) is

• so the proportion of errors corrected is


