Coding and Information Theory Chapter 6: Error-correcting Codes _{Xuejun Liang}

2019 Fall

Chapter 6: Error-correcting Codes

- 1. Introductory Concepts
- 2. Examples of Codes
- 3. Minimum Distance
- 4. Hamming's Sphere-packing Bound
- 5. The Gilbert-Varshamov Bound
- 6. Hadamard Matrices and Codes

The aim of this chapter

- Is to construct codes C with good transmissionrates R and low error-probabilities Pr_E , as promised by Shannon's Fundamental Theorem.
 - This part of the subject goes under the name of Coding Theory (or Error-correcting Codes), as opposed to Information Theory.
- Will concentrate on a few simple examples to illustrate some of the methods used to construct more advanced codes

Finite Field and Linear Space

- A set F is a Field
 - At least two elements 0, $1 \in F$
 - Two operations + and \times on F
 - Associative and commutative
 - Operation × distributes over +
 - 0 is the identity for + and 1 for \times
 - Additive inverse and multiplicative inverse

Finite Fields

Goal: Given a prime p and a positive integer n, construct a field with pⁿ elements.

Definitions and Notations:

 $Z_p[x]$: all polynomials in the indeterminate x with coefficients in Z_p . deg(f) : the degree of f (f $\in Z_p[x]$) is the largest exponent in a term of f. f | g : f divides g (f, g $\in Z_p[x]$), if g = f \cdot h for some h $\in Z_p[x]$. g = h (mod f) : f | (g - h) (f, g, h $\in Z_p[x]$ and $def(f) \ge 1$) $Z_p[x]/(f)$: all congruence classes modulo f in $Z_p[x]$ (f $\in Z_p[x]$).

 $Z_p[x]/(f)$ is equipped with +, × and $|Z_p[x]/(f)| = p^n$, where n=deg(f)

Finite Fields (Cont.)

Example: $Z_3[x]/(x^2-1)$

List all the elements in forms $a_0^+ a_1 x$, $a_0, a_1 \in Z_3$. List a complete multiplication table.

In general $Z_p[x]/(f)$ is a ring, not a field.

Definition: A polynomial f in $Z_p[x]$ is called irreducible, if f can not be written as $f = f_1 \cdot f_2$ where deg $(f_1) > 0$ and deg $(f_2) > 0$.

Fact: If f in $Z_p[x]$ is irreducible polynomial of degree n, then $Z_p[x]/(f)$ is a field with p^n elements.

Notation: $Z_p[x]/(f)$ is called Galois field and is denoted by $GF(p^n)$.

Linear (vector) space: Definition

A linear space V over a field F is a set whose elements are called vectors and where two operations, addition and scalar multiplication, are defined:

- **1.** addition, denoted by +, such that to every pair $x, y \in V$ there correspond a vector $x + y \in V$, and
 - x + y = y + x,
 - $x + (y + z) = (x + y) + z, x, y, z \in V;$

(X, +) is a group, with neutral element denoted by 0 and inverse denoted by -, x + (-x) = x - x = 0.

- **2.** scalar multiplication of $x \in V$ by elements $k \in F$, denoted by $kx \in V$, and
 - k(ax) = (ka)x,
 - k(x + y) = kx + ky,
 - $(k + a)x = kx + ax, x, y \in V, k, a \in F.$

Moreover 1x = x for all $x \in V$, 1 being the unit in F.

• Example: V₄ of all 4-tuples over Z₂ (GF(2)).

Subspace and Linearly independent

- Subspace: $S \subseteq V$
 - addition and scalar multiplication are closed in S
- Linear combination
 - $a_1v_1 + a_2v_2 + ... + a_nv_n$
 - Linearly independent of v_1 , v_2 , ..., v_n
 - If $a_1v_1 + a_2v_2 + ... + a_nv_n = 0$ then $a_1 = 0$, $a_2 = 0$, ..., $a_n = 0$.
 - Linearly dependent of v₁, v₂, ..., v_n
 - There are $a_1, a_2, ..., a_n$ (not all 0's) such that $a_1v_1 + a_2v_2 + ... + a_nv_n = 0$
- Example 4.11: determine if the vectors are linearly dependent or not
- Example 4.12: determine if the vectors are linearly dependent or not

Basis and Dimension

- Basis (or Base)
 - Basis: independent vectors that can span the whole vector space.
 - Any vector is a linear combination of basis vectors.
- Dimension
 - Number of vectors within the basis
 - Example: V_n is n-dimension
- Example 4.13: determine a basis and the dimension of the subspace in V₄ over Z₂ consisting of vectors:
 (0000) (1100) (1010) (0001)
 (0110) (1101) (1011) (0111)

Orthogonality and Dual Space

- Orthogonality
 - Inner product of $\mathbf{u} = (u_0, u_1, ..., u_{n-1})$ and $\mathbf{v} = (v_0, v_1, ..., v_{n-1})$: $\mathbf{u}.\mathbf{v} = u_0v_0 + u_1v_1 + ..., + u_{n-1}v_{n-1}$
 - **u** and **v** are said orthogonal if **u.v** = 0
 - Subspace S and P of V_n are said orthogonal if for any u ∈ S and any v ∈ P, we have u.v = 0
- Dual Space
 - Subspace S of V_n is the dual space (null space) of another subspace P of V_n if S and P are orthogonal and dim(S)+dim(P) = n
- Example 4.14: show S and P are dual each other
 - $S = \{(0\ 0\ 0\ 0), (1\ 1\ 0\ 0), (1\ 0\ 1\ 1), (0\ 1\ 1\ 1)\}$
 - $P = \{(0 \ 0 \ 0 \ 0), (1 \ 1 \ 0 \ 1), (1 \ 1 \ 1 \ 0), (0 \ 0 \ 1 \ 1)\}$

Raw space and Column Space

- Let G be a m×n matrix
 - All linear combinations of row vectors of G is a subspace of V_{n_r} called **row vector space** of G.
 - All linear combinations of column vectors of G is a subspace of V_m called **column vector space** of G.
 - The dimension of row vector space is called **row rank** and the dimension of column vector space is called **column rank**.
 - Row rank and column are always equal, it is called the rank of the matrix.
- Elementary row operations of a matrix
 - swap two rows, multiply a row with a scalar, add multiple of a row to another
- Elementary row operations do not change the row rank.

Raw space and Column Space (cont.)

- Example 4.15: (ample 4.15):

 Determine the row space of matrix $G = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{pmatrix}$
- Example 4.16:
 - Consider the G in 4.15. Compute a matric G' by adding row 3 of G to row 1 of G and then interchanging rows 2 and 3 of G.
 - Show that the row space of G' is the same as that generated by G.

6.1 Introductory Concepts

- Assume channel Γ has input A and output B, and A
 = B = F, where F is a finite field.
- Note Z_p of integers mod (p) is a finite field, where p is a prime number.
- Theorem 6.1
 - a) There is a finite field of order q if and only if $q = p^e$ for some prime p and integer $e \ge 1$.
 - b) Any two finite fields of the same order are isomorphic.

Galois Field

- The essentially unique field of order q is known as the Galois field F_q or GF(q).
 - When e = 1, then q = p and $F_q = F_p = Z_p$.
 - When e > 1, $F_q = Z_p[x]/f(x)$, where f(x) is an irreducible polynomial of degree e on the field Z_p .
 - When e > 1, $F_q = Z_p[\alpha]$, where α is a root of f(x) which an irreducible polynomial of degree e on the field Z_p .
- Example 6.2
 - The quadratic polynomial $f(x) = x^2 + x + 1$ has no roots in the field Z_2 .

 $F_4 = \{a + b\alpha \mid a, b \in \mathbf{Z}_2\} = \{0, 1, \alpha, 1 + \alpha\}$

Linear Code

- Let F be a field, then the set $V = F^n$ of all n-tuples with coordinates in F is an n-dimensional vector space over F.
 - the operations are component wise addition and scalar multiplication
- Assume that any code-words in C are of length n
 - So C is a subset of the set $V = F^n$
- We say that C is a linear code (or a group code) if C is a non-empty linear subspace of V.
 - If $\boldsymbol{u}, \boldsymbol{v} \in C$ then $a\boldsymbol{u} + b\boldsymbol{v} \in C$ for all $a, b \in F$

The rate of a code *C*

- We will always denote |C| by M
- When C is linear we have M = q^k , where $k = \dim(C)$ is the dimension of the subspace C.
 - We then call *C* a linear [*n*, *k*]-code.
- The rate of a code C is $R = \frac{\log_q M}{n}$ (6.1)
 - So in the case of a linear [n, k]-code we have

k information digits, carrying the information n - k check digits, confirming or protecting that information

$$R = \frac{k}{n} \qquad (6.2)$$

Notes

• We will assume that all code-words in *C* are equiprobable, and that we use nearest neighbor decoding (with respect to the Hamming distance on *V*).

6.2 Examples of Codes

- Example 6.3: The repetition code R_n over F
 - the words $u = uu \dots u \in V = F^n$, where $u \in F$, so M = |F| = q.
 - If F is a field then R_n is a linear code of dimension k = 1, spanned by the word (or vector) 11...1
 - Example:
 - Binary code R₃ = {000, 111}
 as a subset of V = Z₂³

- R_n corrects $\lfloor (n-1)/2 \rfloor$ errors
- R_n has rate $R = 1/n \rightarrow 0$ as $n \rightarrow \infty$,

Examples of Codes (Cont.)

- Example 6.4: The parity-check code P_n over a field $F = F_q$
 - all vectors $u = u_1 u_2 \dots u_n \in V$ such that $\sum_i u_i = 0$.
 - if n = 3 and q = 2then $P_3 = \{000, 011, 101, 110\}$.

- $M = q^{n-1}$
- R = (n 1)/n, so $R \rightarrow 1$ as $n \rightarrow \infty$
- it will detect a single error, but cannot correct it.

Hamming Code

- Example 6.5
 - The binary Hamming code H₇ is a linear code of length n
 = 7 over F₂
 - 4 bits for data $\mathbf{a} = a_1 a_2 a_3 a_4$
 - 3 bits for checking
 - How to construct the code for **a**
 - Let the code word $\mathbf{u} = u_1 u_2 u_3 u_4 u_5 u_6 u_7$
 - Bits $u_3 = a_1$, $u_5 = a_2$, $u_6 = a_3$, and $u_7 = a_4$
 - Bits u₁, u₂, u₄ for checking, determined by

 $u_4 + u_5 + u_6 + u_7 = 0$ $u_2 + u_3 + u_6 + u_7 = 0$ $u_1 + u_3 + u_5 + u_7 = 0$

ABC A=4, B=2, C=1

Hamming Code (Cont.)

- Example 6.5
 - Example: **a** = 0110

	1	2	3	4	5	6	7
	001	010	011	100	101	110	111
4 (s ₁)				100	100	100	100
2 (s ₂)		010	010			010	010
1 (s ₃)	001		001		001		001
u	1	1	0	0	1	1	0

<i>S</i> ₁	=	u_4	+	u_5	+	и ₆	+	u_7
<i>S</i> ₂	=	u_2	+	<i>u</i> ₃	+	и ₆	+	u_7
S ₃	=	u_1	+	и ₃	+	u_5	+	u_7

- The receiver will compute s₁, s₂, s₃. If they are all zero then the code is no error.
- If not, the binary number s₁s₂s₃ tells which bit is wrong.
- Now, assume v = 1110110 is received with 1-bit error in bit 3. you will get s₁= 0, s₂= 1, and s₃ = 1. So, s₁s₂s₃ = 011 = 3.

Hamming Code (Cont.)

- Example 6.5 (Cont.)
 - The binary Hamming code H_7 is a linear code with dimension k = 4.
 - $M = |H_7| = 16 = 2^4$
 - It can be generated by
 - **u**₁ = 1110000, **u**₂ = 1001100, **u**₃ = 0101010, **u**₄ = 1101001
 - which are obtained from

e₁ = 1000, **e**₂ = 0100, **e**₃ = 0010, **e**₄ = 0001

- Note:
 - Although the binary codes R_3 and H_7 both correct a single error, the rate R = 4/7 of H_7 is significantly better than the rate 1/3 of R_3 .

Examples of Codes (Cont.)

- Example 6.6
 - Suppose that C is a code of length n over a field F. Then we can form a code of length n + 1 over F, called the extended code C. by
 - adjoining an extra digit u_{n+1} to every code-word $u = u_1u_2 \dots u_n \in C$, chosen so that $u_1 + u_2 + \dots + u_{n+1} = 0$.
 - Clearly $|\overline{C}| = |C|$, and if C is linear then so is \overline{C} , with the same dimension
- Example 6.7
 - If C is a code of length n, we can form a punctured code
 C° of length n 1 by
 - choosing a coordinate position i, and deleting the symbol u_i from each codeword $u_1u_2 \dots u_n \in C$.

6.3 Minimum Distance

- Define the minimum distance of a code C to be $d = d(C) = \min\{d(\mathbf{u}, \mathbf{u}') \mid \mathbf{u}, \mathbf{u}' \in C, \mathbf{u} \neq \mathbf{u}'\},$ (6.3)
- (n, M, d)-code
 - A code of length *n*, with *M* code-words, and with minimum distance *d*.
- [n, k, d]-code
 - A linear (n, M, d)-code, of dimension k.
- Our aim is to choose codes C for which d is large, so that Pr_E will be small.

• Define the weight of any vector $v = v_1 v_2 \dots v_n \in V$ to be

$$wt(\mathbf{v}) = d(\mathbf{v}, \mathbf{0}), \tag{6.4}$$

- It is easy to see that for all $u, u' \in V$, we have $d(\mathbf{u}, \mathbf{u}') = \operatorname{wt}(\mathbf{u} - \mathbf{u}')$
- Lemma 6.8
 - If C is a linear code, then its minimum distance d is given by

 $d = \min\{ \operatorname{wt}(\mathbf{v}) \mid \mathbf{v} \in \mathcal{C}, \mathbf{v} \neq \mathbf{0} \}.$

- We say that a code C corrects t errors, or is t-errorcorrecting, if, whenever a code-word $u \in C$ is transmitted and is then received with errors in at most t of its symbols, the resulting received word vis decoded correctly as u.
- Equivalently, whenever $u \in C$ and $v \in V$ satisfy $d(u, v) \le t$, the decision rule Δ gives $\Delta(v) = u$.
- Example 6.9
 - A repetition code R_3 corrects one error, but not two.

- If u is sent and v is received, we call the vector e = v u the error pattern.
 - A code corrects t errors if and only if it can correct all errorpatterns $e \in V$ of weight wt $(e) \leq t$.
- Theorem 6.10
 - A code *C* of minimum distance *d* corrects *t* errors if and only if $d \ge 2t + 1$. (Equivalently, *C* corrects up to $\left|\frac{d-1}{2}\right|$ errors.)
- Example 6.11
 - A repetition code R_n of length n has minimum distance d = n, since d(u, u') = n for all $u \neq u'$ in R_n . This code therefore corrects $t = \lfloor (n - 1)/2 \rfloor$ errors.

- Example 6.12
 - Exercise 6.3 shows that the Hamming code H_7 has minimum distance d = 3, so it has t = 1 (as shown in §6.2). Similarly, $\overline{H_7}$ has d = 4 (by Exercise 6.4), so this code also has t = 1.
- Example 6.13
 - A parity-check code P_n of length n has minimum distance d = 2; for instance, the code-words u =110 ... 0 and u' = 0 = 00 ... 0 are distance 2 apart, but no pair are distance 1 apart. It follows that the number of errors corrected by P_n is 0.

- C detects d 1 errors
- Example 6.14
 - The codes R_n and P_n have d = n and 2 respectively, so R_n detects n-1 errors, while P_n detects one; $\overline{H_7}$ has d = 3, so it detects two errors.

6.4 Hamming's Sphere-packing Bound

- Define Hamming's sphere to be $S_t(\mathbf{u}) = \{ \mathbf{v} \in \mathcal{V} \mid d(\mathbf{u}, \mathbf{v}) \le t \} \quad (\mathbf{u} \in \mathcal{C})$ (6.5)
- We have

$$|S_t(\mathbf{u})| = 1 + \binom{n}{1}(q-1) + \binom{n}{2}(q-1)^2 + \dots + \binom{n}{t}(q-1)^t$$
(6.6)

- Theorem 6.15
 - Let C be a q-ary t-error-correcting code of length n, with M code-words. Then

$$M\left(1 + \binom{n}{1}(q-1) + \binom{n}{2}(q-1)^2 + \dots + \binom{n}{t}(q-1)^t\right) \le q^n$$

Sphere-packing Bound (Cont.)

- Example 6.16
 - If we take q = 2 and t = 1 then Theorem 6.15 gives $M \le 2^n/(1+n)$, so $M \le \lfloor 2^n/(1+n) \rfloor$ since M must be an integer. Thus $M \le 1, 1, 2, 3, 5, 9, 16, ...$ for n = 1, 2, 3, 4, 5, 6, 7, ...
- Corollary 6.17
 - Every *t*-error-correcting linear [n, k]-code *C* over *F*_q satisfies

$$\sum_{i=0}^{l} \binom{n}{i} (q-1)^{i} \le q^{n-k}$$

Sphere-packing Bound (Cont.)

 Corollary 6.17 therefore gives us a lower bound on the number of check digits (n-k) required to correct t errors

$$n-k \ge \log_q \left(\sum_{i=0}^t \binom{n}{i}(q-1)^i\right)$$

• A code *C* is **perfect** if it attains equality in Theorem 6.15 (equivalently in Corollary 6.17, in the case of a linear code).

Sphere-packing Bound (Cont.)

- Example 6.18
 - The binary repetition code R_n of odd length n is perfect!
 - However, when n is even or q > 2, R_n is not perfect.

- Example 6.19
 - The binary Hamming code H_7 is perfect.
- If *C* is any binary code then Theorem 6.15 gives

$$2^n \geq M\binom{n}{t} = 2^{nR}\binom{n}{t}$$

Sphere-packing Bound (Cont.)

- Thus $2^{n(1-R)} \ge \binom{n}{t}$
- So taking logarithms gives $1 - R \ge \frac{1}{n} \log_2 \binom{n}{t}$

- Apply Stirling's approximation $n! \sim (n/e)^n \sqrt{2\pi n}$ to the three factorials in $\binom{n}{t} = n!/t! (n-t)!$
- We get the Hamming's upper bound on the proportion t/n of errors corrected by binary codes of rate R, as $n \to \infty$.

$$H_2\left(\frac{t}{n}\right) \le 1 - R \tag{6.7}$$

where H_2 is the binary entropy function.

6.5 The Gilbert-Varshamov Bound

• Let $A_q(n, d)$ denote the greatest number of codewords in any q-ary code of length n and minimum distance d, where $d \le n$. Let $t = \lfloor (d - 1)/2 \rfloor$, we have (by Theorem 6.10)

$$A_q(n,d)\Big(1+\binom{n}{1}(q-1)+\binom{n}{2}(q-1)^2+\cdots+\binom{n}{t}(q-1)^t\Big)\leq q^n$$

- Example 6.20
 - If q = 2 and d = 3 then t = 1, so as in Example 6.16 we find that $A_2(n,3) \le \lfloor 2^n/(n+1) \rfloor$. Thus for n = 3, 4, 5, 6, 7, ... we have $A_2(n,3) \le 2, 3, 5, 9, 16, ...$

The Gilbert-Varshamov Bound (Cont.)

• Theorem 6.21

• If
$$q \ge 2$$
 and $n \ge d \ge 1$ then
 $A_q(n,d) \left(1 + \binom{n}{1} (q-1) + \binom{n}{2} (q-1)^2 + \dots + \binom{n}{d-1} (q-1)^{d-1} \right) \ge q^n$

- Example 6.22
 - If we take q = 2 and d = 3 again (so that t = 1), then for all $n \ge 3$, we have

$$A_2(n,3)\left(1+n+\frac{n(n-1)}{2}\right) \ge 2^n$$

• This gives $A_2(n,3) \ge 2, 2, 2, 3, 5, \dots$ for n = 3, 4, 5, 6, 7,

The Gilbert-Varshamov Bound (Cont.)

- Two bounds on R $R \ge 1 - H_2 \left(\frac{d-1}{n}\right) *$ where $d \le \lfloor n/2 \rfloor$ $R \le 1 - H_2 \left(\frac{t}{n}\right) \quad \text{See (6.7)}$ where $t = \lfloor (d-1)/2 \rfloor$
 - * Putting $\lambda = Q$, Exercise 5.7 gives $\sum_{i \le nQ} \binom{n}{i} \le 2^{nH(Q)}$ for $Q < \frac{1}{2}$

6.6 Hadamard Matrices and Codes

- A real $n \ge n$ matrix $H = (h_{ij})$ (of order n) is called a Hadamard matrix, if it satisfies
 - a) each h_{ij} = ±1, and
 - b) distinct rows r_i , of H are orthogonal, that is, $r_i \cdot r_j = 0$ for all $i \neq j$.
- Note: $|\det(H)| = n^{n/2}$
- Example 6.23
 - The matrices H = (1) and $\begin{pmatrix} 1 & 1 \\ 1 & \end{pmatrix}$ are Hadamard matrices of order 1 and 2, with $|\det H|$ = 1 and 2 respectively.

Hadamard Matrices (Cont.)

- Lemma 6.24
 - Let H be a Hadamard matrix of order n, and let

$$H' = \begin{pmatrix} H & H \\ H & -H \end{pmatrix}$$

Then H' is a Hadamard matrix of order 2n.

- Corollary 6.25
 - There is a Hadamard matrix of order 2^m for each integer $m \ge 0$.
- Example 6.26
 - The Hadamard matrices of order 2^m obtained by this method are called Sylvester matrices. For instance, taking m = 1 or 2,

Hadamard Matrices and Codes

- Lemma 6.27
 - If there is a Hadamard matrix H of order n > 1, then n is even.
- Lemma 6.28
 - If there is a Hadamard matrix H of order n > 2, then n is divisible by 4.
- Theorem 6.29
 - Each Hadamard matrix H of order n gives rise to a binary code of length n, with M = 2n code-words and minimum distance d = n/2.
- Any code *C* constructed as in Theorem 6.29 is called a Hadamard code of length *n*.

Hadamard Codes

- If *n* is not a power of 2 then neither is 2*n*, so a Hadamard code of such a length *n* cannot be linear
- The transmission rate of any Hadamard code of length
 n is

$$R = \frac{\log_2(2n)}{n} = \frac{1 + \log_2 n}{n} \to 0 \quad \text{as} \quad n \to \infty$$

• The number of errors corrected (if *n* > 2) is

$$t = \left\lfloor \frac{d-1}{2} \right\rfloor = \left\lfloor \frac{n-2}{4} \right\rfloor = \frac{n}{4} - 1$$

• so the proportion of errors corrected is

$$\frac{t}{n} = \frac{1}{4} - \frac{1}{n} \to \frac{1}{4}$$
 as $n \to \infty$