Coding and Information Theory Chapter 4 Information Channels _{Xuejun Liang}

2019 Fall

Chapter 4: Information Channels

- 1. Notation and Definitions
- 2. The Binary Symmetric Channel
- 3. System Entropies
- 4. System Entropies for the Binary Symmetric Channel
- 5. Extension of Shannon's First Theorem to Information Channels
- 6. Mutual Information
- 7. Mutual Information for the Binary Symmetric Channel
- 8. Channel Capacity

The aim of this chapter

- We Consider
 - a source sending messages through an unreliable (or noisy) channel to a receiver
- Our aim here is
 - to measure how much information is transmitted, and how much is lost in this process, using several different variations of the entropy function, and then
 - to relate this to the average word-length of the code used.

4.1 Notation and Definitions

• Information channel Γ

• with finite alphabet A of symbols $a = a_1, ..., a_r$, having probabilities

$$p_i = \Pr(a = a_i)$$
 where
 $0 \le p_i \le 1$ and $\sum_{i=1}^r p_i = 1$

- Output of Γ: Source B,
 - with a finite alphabet B of symbols $b = b_1, \dots, b_s$, having probabilities

$$q_j = \Pr(b = b_j)$$
 where
 $0 \le q_j \le 1$ and $\sum_{j=1}^{s} q_j = 1$

Example 4.1

- Binary symmetric channel (BSC)
 - $A = B = Z_2 = \{0, 1\}.$
 - Each input symbol a = 0 or 1 is correctly transmitted with probability P, and is incorrectly transmitted (as $\overline{a} = 1 - a$) with probability $\overline{P} = 1 - P$, for some constant P ($0 \le P \le 1$).

Example 4.2

- Binary erasure channel (BEC)
 - $A = Z_2 = \{0, 1\}.$
 - $B = \{0, 1, ?\}.$
 - Each input symbol a = 0 or 1 is correctly transmitted with probability P, and is erased (or made illegible) with probability \$\overline{P}\$, indicated by an output symbol b = ?

Forward Probabilities

- Forward probabilities of Γ

$$P_{ij} = \Pr\left(b = b_j \mid a = a_i\right) = \Pr\left(b_j \mid a_i\right)$$

• We have
$$\sum_{j=1}^{s} P_{ij} = 1$$

• The channel matrix $M = (P_{ij}) = \begin{pmatrix} P_{11} & \dots & P_{1s} \\ \vdots & & \vdots \end{pmatrix}$

- The channel matrix $M = (P_{ij}) = \begin{pmatrix} \vdots & \vdots \\ P_{r1} & \dots & P_{rs} \end{pmatrix}$
- For instance, if Γ is the BSC or BEC we have $M = \begin{pmatrix} P & \overline{P} \\ \overline{P} & P \end{pmatrix} \text{ or } \begin{pmatrix} P & 0 & \overline{P} \\ 0 & P & \overline{P} \end{pmatrix}$

Combining two channels

- Sum $\Gamma + \Gamma'$
 - If Γ and Γ' have disjoint input alphabets A and A', and disjoint output alphabets B and B', then the sum $\Gamma + \Gamma'$ has input and output alphabets $A \cup A'$ and $B \cup B'$.
 - Each input symbol is transmitted through Γ or Γ' , so the channel matrix is a block matrix

$$\begin{pmatrix} M & O \\ O & M' \end{pmatrix}$$

where *M* and *M'* are the channel matrices for Γ and Γ' .

Combining two channels

• Product $\Gamma \times \Gamma'$

- The input and output alphabets are A x A' and B x B'
- The sender transmits a pair $(a, a') \in A \times A'$ by simultaneously sending a through Γ and a' through Γ'
- A pair $(b, b') \in B \times B'$ is received
- Thus the forward probabilities are

 $\Pr\left((b,b') \mid (a,a')\right) = \Pr\left(b \mid a\right) . \Pr\left(b' \mid a'\right)$

- So the channel matrix is the **Kronecker product** $M \otimes M'$ of the matrices M and M' for Γ and Γ' .
 - if $M = (P_{ij})$ and $M' = (P'_{kl})$ are $r \times s$ and $r' \times s'$ matrices, then $M \otimes M'$ is an $rr' \times ss'$ matrix, with entries $P_{ij}P'_{kl}$

Example

• If Γ and Γ' are binary symmetric channels, with channel matrices

$$M = \begin{pmatrix} P & \overline{P} \\ \overline{P} & P \end{pmatrix} \quad \text{and} \quad M' = \begin{pmatrix} P' & \overline{P'} \\ \overline{P'} & P' \end{pmatrix}$$

• then $\Gamma+\Gamma'$ and $\Gamma\times\Gamma'$ have channel matrices

	0,	1,	0',	1'					(1,1')	
0	(P	\overline{P}	0	0 \		(PP'	$\overline{P}P'$	$P\overline{P'}$	$\overline{P} \overline{P'}$	(0,0')
1	\overline{P}	Ρ	0	0	and	$\overline{P}P'$	PP'	$\overline{P}\overline{P'}$	$P\overline{P'}$	(1,0')
0'	0	0	P'	$\overline{P'}$	and	$P\overline{P'}$	$\overline{P} \overline{P'}$	PP'	$\overline{P}P'$	(0,1')
1'	0/	0	$\overline{P'}$	P' /	and	$\overline{P} \overline{P'}$	$P\overline{P'}$	$\overline{P}P'$	PP' /	(1,1')

The channel relationships

• The channel relationships

$$\sum_{i=1}^{r} p_i P_{ij} = q_j \qquad (4.2)$$

- Where $p_i = \Pr(a = a_i)$, $q_j = \Pr(b = b_j)$ and $P_{ij} = \Pr(b = b_j | a = a_i) = \Pr(b_j | a_i)$ (4.2) can be written as $\mathbf{p}M = \mathbf{q}$. (4.2')
- The backward probabilities

$$Q_{ij} = \Pr\left(a = a_i \mid b = b_j\right) = \Pr\left(a_i \mid b_j\right)$$

• The joint probabilities

 $R_{ij} = \Pr\left(a = a_i \text{ and } b = b_j\right) = \Pr\left(a_i, b_j\right)$

• Bayes' Formula

$$Q_{ij} = \frac{p_i}{q_j} P_{ij} \tag{4.3}$$

provided $q_j \neq 0$.

• Combining this with (4.2) we get

$$Q_{ij} = \frac{p_i P_{ij}}{\sum_{k=1}^{r} p_k P_{kj}}$$
(4.4)

4.2 The Binary Symmetric Channel

- Binary symmetric channel (BSC)
 - $A = B = Z_2 = \{0, 1\}.$
 - the channel matrix has the form

$$M = \begin{pmatrix} P_{00} & P_{01} \\ P_{10} & P_{11} \end{pmatrix} = \begin{pmatrix} P & \overline{P} \\ \overline{P} & P \end{pmatrix}$$

for some *P* where $0 \le P \le 1$

- The input probabilities have the form $p_0 = \Pr(a = 0) = p,$ $p_1 = \Pr(a = 1) = \overline{p},$ for some p such that $0 \le p \le 1$
- The channel relationships = ? And Bayes' formula = ?

Examples

- Example 4.4
 - Let the input A be defined by putting p=1/2
 - Probabilities of the output symbols: $q_0 = ?$ And $q_1 = ?$
 - The backward probabilities: Q_{00} , Q_{01} , Q_{10} , Q_{11} , = ?
- Example 4.5
 - Suppose that P = 0.8 and p = 0.9
 - Probabilities of the output symbols: $q_0 = ?$ And $q_1 = ?$
 - The backward probabilities: Q_{00} , Q_{01} , Q_{10} , Q_{11} , = ?
 - Necessary and sufficient conditions on p and P for

 $Q_{00} > Q_{10}$ and $Q_{01} > Q_{11}$

4.3 System Entropies

- The input A and the output B of a channel Γ
 - the input entropy $H(\mathcal{A}) = \sum_{i} p_i \log \frac{1}{p_i}$
 - the output entropy $H(\mathcal{B}) = \sum_{j} q_j \log \frac{1}{q_j}$
 - If $b = b_i$ is received, there is a conditional entropy $H(\mathcal{A} \mid b_j) = \sum_i \Pr(a_i \mid b_j) \log \frac{1}{\Pr(a_i \mid b_j)} = \sum_i Q_{ij} \log \frac{1}{Q_{ij}}$
 - the equivocation (of A with respect to B)

$$H(\mathcal{A} \mid \mathcal{B}) = \sum_{j} q_{j} H(\mathcal{A} \mid b_{j}) = \sum_{j} q_{j} \left(\sum_{i} Q_{ij} \log \frac{1}{Q_{ij}} \right) = \sum_{i} \sum_{j} R_{ij} \log \frac{1}{Q_{ij}}$$

System Entropies (Cont.)

• Similarly, if a_i is sent then the uncertainty about B is the conditional entropy

$$H(\mathcal{B} \mid a_i) = \sum_{j} \Pr(b_j \mid a_i) \log \frac{1}{\Pr(b_j \mid a_i)} = \sum_{j} P_{ij} \log \frac{1}{P_{ij}}$$

• the equivocation of B with respect to A
$$H(\mathcal{B} \mid \mathcal{A}) = \sum_{i} p_i H(\mathcal{B} \mid a_i) = \sum_{i} p_i \left(\sum_{j} P_{ij} \log \frac{1}{P_{ij}}\right) = \sum_{i} \sum_{j} R_{ij} \log \frac{1}{P_{ij}}$$

the joint entropy

$$H(\mathcal{A}, \mathcal{B}) = \sum_{i} \sum_{j} \Pr(a_i, b_j) \log \frac{1}{\Pr(a_i, b_j)} = \sum_{i} \sum_{j} R_{ij} \log \frac{1}{R_{ij}}$$

System Entropies (Cont.)

- If A and B are statistically independent, then $H(\mathcal{A}, \mathcal{B}) = H(\mathcal{A}) + H(\mathcal{B})$ (4.5)
- In general, A and B are related, rather than independent, then

$$H(\mathcal{A}, \mathcal{B}) = H(\mathcal{A}) + H(\mathcal{B} \mid \mathcal{A})$$
(4.6)

 $H(\mathcal{A},\mathcal{B}) = H(\mathcal{B}) + H(\mathcal{A} \mid \mathcal{B})$ (4.7)

• We call *H*(A), *H*(B), *H*(A|B), *H*(B|A), and *H*(A, B) the system entropies.

4.4 System Entropies for the Binary Symmetric Channel

 The input and output entropies for BSC are
 H(A) = -p log p - p log p = H(p),
 H(B) = -q log q - q log q = H(q),

where $q = pP + \bar{p}\bar{P}$.

• Definition: A function $f: [0,1] \rightarrow R$ is strictly convex, if for $a, b \in [0,1]$ and $x = \lambda a + \overline{\lambda} b$ with $0 \le \lambda \le 1$, $f(x) \ge \lambda f(a) + \overline{\lambda} f(b)$

with equality if and only if x = a or b, that is, a = b or $\lambda = 0$ or 1.

System Entropies for BSC (Cont.)

- Lemma 4.6
 - If a function $f : [0,1] \rightarrow R$ is continuous on the interval [0,1] and twice differentiable on (0,1), with f''(x) < 0 for all $x \in (0,1)$, then f is strictly convex.
- Corollary 4.7
 - The entropy function H(p) is strictly convex on [0,1].

System Entropies for BSC (Cont.)

• The BSC satisfies

 $H(\mathcal{B}) \ge H(\mathcal{A}), \qquad (4.8)$

with equality if and only if p = 1/2 or the channel is totally unreliable (P = 0) or reliable (P = 1)

Transmission through the BSC generally increases uncertainty

Note in BSC, $q = pP + \bar{p}\bar{P}$

System Entropies for BSC (Cont.)

• For the BSC we have

 $H(\mathcal{B} \mid \mathcal{A}) = H(P)$

• The equivocation for the BSC is

 $H(\mathcal{A} \mid \mathcal{B}) = H(p) + H(P) - H(q).$

The BSC satisfies

 $\begin{array}{ll} H(\mathcal{B} \mid \mathcal{A}) \leq H(\mathcal{B}), & (4.9) \\ H(\mathcal{A} \mid \mathcal{B}) \leq H(\mathcal{A}), & (4.10) \end{array}$

the uncertainty about B generally decreases when A is known

the uncertainty about A generally decreases when B is known

with equality if and only if P = 1/2 or p = 0, 1.

4.5 Extension of Shannon's First Theorem to Information Channels

- Extension of Shannon's First Theorem
 - The greatest lower bound of the average word-lengths of uniquely decodable encodings of the input A of a channel, given knowledge of its output B, is equal to the equivocation H(A|B).
- Interpretation
 - the receiver knows B but is uncertain about A; the extra information needed to be certain about A is the equivocation H(A|B), and
 - this is equal to the least average word-length required to supply that extra information (by some other means, separate from Γ).

Extension of Shannon's First Theorem

- Theorem 4.8
 - If the output B of a channel is known, then by encoding Aⁿ with n sufficiently large, one can find uniquely decodable encodings of the input A with average wordlengths arbitrarily close to the equivocation H(A|B).

4.6 Mutual Information

- If Γ is a channel with input A and output B, then the entropy H(A) of A has three equivalent interpretations:
 - 1. it is the uncertainty about A when B is unknown;
 - 2. it is the information conveyed by A when B is unknown;
 - 3. it is the average word-length needed to encode A when B is unknown.
- Similarly, the equivocation H(A|B) has three equivalent interpretations:
 - 1. it is the uncertainty about A when B is known;
 - 2. it is the information conveyed by A when B is known;
 - 3. it is the average word-length needed to encode A when B is known.

Mutual Information (Cont.)

• The mutual information is defined as the difference between these two numbers:

 $I(\mathcal{A}, \mathcal{B}) = H(\mathcal{A}) - H(\mathcal{A} \mid \mathcal{B})$

- This also has three equivalent interpretations:
 - it is the amount of uncertainty about A resolved by knowing B;
 - it is the amount of information about A conveyed by B;
 - 3. it is the average number of symbols, in the code-words for A, which refer to B.

I(A, B) represents how much information A and B have in common

Examples

- Example 4.9
 - For a rather frivolous example, let Γ be a film company, A a book, and B the resulting film of the book. Then I(A, B) represents how much the film tells you about the book.
- Example 4.10
 - Let A be a lecture, Γ a student taking notes, and B the resulting set of lecture notes. Then I(A, B) measures how accurately the notes record the lecture.
- Interchanging the roles of A and B, we can define $I(\mathcal{B}, \mathcal{A}) = H(\mathcal{B}) H(\mathcal{B} \mid \mathcal{A})$

Mutual Information (Cont.)

• We have

 $I(\mathcal{A}, \mathcal{B}) = I(\mathcal{B}, \mathcal{A})$ (4.15) $I(\mathcal{A}, \mathcal{B}) = H(\mathcal{A}) + H(\mathcal{B}) - H(\mathcal{A}, \mathcal{B})$ (4.16)

- Theorem 4.11
 - For every channel Γ we have I(A, B) ≥ 0, with equality if and only if the input A and the output B are statistically independent.

Mutual Information (Cont.)

- Corollary 4.12
 - For every channel Γ we have

 $H(\mathcal{A}) \ge H(\mathcal{A} \mid \mathcal{B}),$ $H(\mathcal{B}) \ge H(\mathcal{B} \mid \mathcal{A})$ $H(\mathcal{A}, \mathcal{B}) \le H(\mathcal{A}) + H(\mathcal{B})$

• in each case, there is equality if and only if the input A and the output B are statistically independent.

4.7 Mutual Information for the Binary Symmetric Channel

Let us take the channel Γ to be the BSC, we have
 I(A, B) = H(B) - H(B | A)
 H(B) = H(q) and H(B | A) = H(P) where q = pP + pP

• So that $I(\mathcal{A}, \mathcal{B}) = H(q) - H(P) = H(pP + \overline{p}\overline{P}) - H(P)$ $0 \le I(\mathcal{A}, \mathcal{B}) \le 1 - H(P)$

4.8 Channel Capacity

- The mutual information I(A, B) for a channel Γ represents how much of the information in the input A is emerging in the output B.
 - This depends on both Γ and A
- The capacity C of a channel Γ is defined to be the maximum value of the mutual information I(A, B), where A ranges over all possible inputs for Γ.
 - This depends on Γ alone, represents the maximum amount of information which the channel can transmit

Channel Capacity (Cont.)

- Example 4.13
 - We saw that the BSC has channel capacity C = 1 H(P), attained when the input satisfies p = 1/2.
 - Figure shows C as a function of P
 - C is greatest when P is 0 or 1

• C is least when
$$P = 1/2$$

