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The aim of this chapter

• We Consider 
• a source sending messages through an unreliable (or 

noisy) channel to a receiver

• Our aim here is
• to measure how much information is transmitted, and 

how much is lost in this process, using several different 
variations of the entropy function, and then 

• to relate this to the average word-length of the code 
used.



• Information channel 
• Input of : Source 

• with finite alphabet of symbols , having 
probabilities

where

• Output of : Source , 
• with a finite alphabet of symbols , having 

probabilities
where

4.1 Notation and Definitions



Example 4.1

• Binary symmetric channel (BSC)
• . 
• Each input symbol or is 

correctly transmitted with 
probability , and is incorrectly 
transmitted (as ) with 
probability , for some 
constant .



Example 4.2

• Binary erasure channel (BEC)
• . 
• . 
• Each input symbol or is 

correctly transmitted with 
probability , and is erased (or 
made illegible) with probability 

, indicated by an output symbol 



Forward Probabilities

• Forward probabilities of 

• We have

• The channel matrix

• For instance, if is the BSC 
or BEC we have



Combining two channels

• Sum
• If and have disjoint input alphabets and , and 

disjoint output alphabets and , then the sum
has input and output alphabets and .

• Each input symbol is transmitted through or , so the 
channel matrix is a block matrix

where and are the channel matrices for and 



Combining two channels

• Product
• The input and output alphabets are A x A' and B x B’
• The sender transmits a pair ( , ) A x A' by 

simultaneously sending through and through 
• A pair ( , ) B X B' is received
• Thus the forward probabilities are

• So the channel matrix is the Kronecker product 
of the matrices and for and .

• if  and ᇱ ᇱ
 are and ᇱ ᇱ matrices, 

then ᇱ is an ᇱ ᇱ matrix, with entries 
ᇱ




Example

• If and are binary symmetric channels, with 
channel matrices 

• then and have channel matrices

(0,0’)
(1,0’)
(0,1’)
(1,1’)

0
1
0’
1’

0,   1,     0’,    1’ (0,0’),  (1,0’),  (0,1’),  (1,1’)



The channel relationships

• The channel relationships

Where , and 

(4.2) can be written as

• The backward probabilities

• The joint probabilities



Bayes' Formula

• Bayes' Formula

provided . 

• Combining this with (4.2) we get



4.2 The Binary Symmetric Channel

• Binary symmetric channel (BSC)
• . 
• the channel matrix has the form

for some where 
• The input probabilities have the form

for some such that 
• The channel relationships = ? And Bayes' formula = ?



Examples

• Example 4.4
• Let the input A be defined by putting 
• Probabilities of the output symbols: = ? And = ? 
• The backward probabilities: , , , , = ?

• Example 4.5
• Suppose that = and = 
• Probabilities of the output symbols: = ? And = ? 
• The backward probabilities: , , , , = ?
• Necessary and sufficient conditions on and for 

and 



4.3 System Entropies

• The input and the output of a channel 
• the input entropy

• the output entropy

• If is received, there is a conditional entropy

• the equivocation (of with respect to )



System Entropies (Cont.)

• Similarly, if is sent then the uncertainty about is the 
conditional entropy

• the equivocation of B with respect to A

• the joint entropy



System Entropies (Cont.)

• If and are statistically independent, then

• In general, and are related, rather than 
independent, then

• We call 
the system entropies.



4.4 System Entropies for the Binary 
Symmetric Channel
• The input and output entropies for BSC are

where .

• Definition: A function : [0,1] is strictly convex, 
if for 

with equality if and only if = or that is, or 
.



System Entropies for BSC (Cont.)

• Lemma 4.6
• If a function : [0,1] is continuous on the interval 

[0,1] and twice differentiable on (0,1) , with f"(x) < 0 for 
all (0,1), then is strictly convex.

• Corollary 4.7
• The entropy function is strictly convex on [0,1].



System Entropies for BSC (Cont.)

• The BSC satisfies

with equality if and only if 
or the channel is 

totally unreliable (P = 0) or 
reliable (P = 1)

Transmission through the BSC 
generally increases uncertainty

Note in BSC, 



System Entropies for BSC (Cont.)

• For the BSC we have

• The equivocation for the BSC is

• The BSC satisfies

with equality if and only if or = , .

the uncertainty about generally 
decreases when is known

the uncertainty about generally 
decreases when is known



4.5 Extension of Shannon's First 
Theorem to Information Channels
• Extension of Shannon's First Theorem

• The greatest lower bound of the average word-lengths 
of uniquely decodable encodings of the input of a 
channel, given knowledge of its output , is equal to the 
equivocation .

• Interpretation
• the receiver knows B but is uncertain about A; the extra 

information needed to be certain about A is the 
equivocation , and 

• this is equal to the least average word-length required to 
supply that extra information (by some other means, 
separate from ).



Extension of Shannon's First Theorem

• Theorem 4.8
• If the output of a channel is known, then by encoding 

An with n sufficiently large, one can find uniquely 
decodable encodings of the input with average word-
lengths arbitrarily close to the equivocation .



4.6 Mutual Information

• If is a channel with input and output , then the entropy 
H( ) of has three equivalent interpretations:

1. it is the uncertainty about A when B is unknown;
2. it is the information conveyed by A when B is unknown;
3. it is the average word-length needed to encode A when B is 

unknown.

• Similarly, the equivocation H( ) has three equivalent 
interpretations:

1. it is the uncertainty about A when B is known;
2. it is the information conveyed by A when B is known;
3. it is the average word-length needed to encode A when B is 

known.



Mutual Information (Cont.)

• The mutual information is defined as the difference 
between these two numbers:

• This also has three equivalent interpretations:
1. it is the amount of uncertainty about resolved by 

knowing ;
2. it is the amount of information about conveyed by 

;
3. it is the average number of symbols, in the code-words 

for A, which refer to .

represents how much information A and B have in common



Examples

• Example 4.9
• For a rather frivolous example, let be a film company, 

A a book, and B the resulting film of the book. Then 
represents how much the film tells you about 

the book.

• Example 4.10
• Let A be a lecture, a student taking notes, and B the 

resulting set of lecture notes. Then measures 
how accurately the notes record the lecture.

• Interchanging the roles of A and B, we can define



Mutual Information (Cont.)

• We have

• Theorem 4.11
• For every channel we have , with equality 

if and only if the input and the output are 
statistically independent.



Mutual Information (Cont.)

• Corollary 4.12
• For every channel we have

• in each case, there is equality if and only if the input A 
and the output B are statistically independent.



4.7 Mutual Information for the Binary
Symmetric Channel
• Let us take the channel to be the BSC, we have

• So that
where



4.8 Channel Capacity

• The mutual information for a channel 
represents how much of the information in the 
input A is emerging in the output B. 

• This depends on both and 

• The capacity C of a channel is defined to be the 
maximum value of the mutual information , 
where ranges over all possible inputs for .

• This depends on alone, represents the maximum 
amount of information which the channel can transmit



Channel Capacity (Cont.)

• Example 4.13
• We saw that the BSC has channel capacity C = 1 - H(P), 

attained when the input satisfies p = . 
• Figure shows C as a function of P

• C is greatest when P is 0 or 1
• C is least when P = 


