Coding and Information Theory Chapter 3 Entropy Xuejun Liang 2019 Fall

Chapter 3: Entropy

- 3.1 Information and Entropy
- 3.2 Properties of the Entropy Function
- 3.3 Entropy and Average Word-length
- 3.4 Shannon-Fane Coding
- **3.5 Entropy of Extensions and Products**
- 3.6 Shannon's First Theorem
- 3.7 An Example of Shannon's First Theorem

The aim of this chapter

- Introduce the entropy function
 - which measures the amount of information emitted by a source
- Examine the basic properties of this function
- Show how it is related to the average word lengths of encodings of the source

3.1 Information and Entropy

- Define a number $I(s_i)$, for each $s_i \in S$, which represents
 - How much information is gained by knowing that S has emitted s_i
 - Our prior uncertainty as to whether s_i will be emitted and our surprise on learning that it has been emitted
- Therefore require that:
 - 1) $I(s_i)$ is a decreasing function of the probability p_i of s_i , with $I(s_i) = 0$ if $p_i = 1$;
 - 2) $I(s_i s_j) = I(s_i) + I(s_j)$, where S emits s_i and s_j consecutively and independently.

where $p_i = \Pr(s_i)$. So that *I* satisfies (1) and (2)

- Example 3.1
 - Let S be an unbiased coin, with s₁ and s₂ representing heads and tails. Then I(s₁) =? and I(s₂) =?

The *r*-ary Entropy of *S*

• The average amount of information conveyed by *S* (per source-symbol) is given by the function

$$H_r(\mathcal{S}) = \sum_{i=1}^q p_i I_r(s_i) = \sum_{i=1}^q p_i \log_r \frac{1}{p_i} = -\sum_{i=1}^q p_i \log_r p_i$$

- Called the *r*-ary entropy of *S*.
- Base r is often omitted $H(S) = \sum_{i=1}^{q} p_i \log \frac{1}{p_i} = -\sum_{i=1}^{q} p_i \log p_i$

- H(p) is maximal when $p = \frac{1}{2}$
- Compute H(p) when $p = \frac{1}{2}$ and $p = \frac{2}{3}$
- Example 3.3
 - If S has q = 5 symbols with probabilities $p_i = 0.3, 0.2, 0.2, 0.2, 0.2, 0.1$, as in §2.2, Example 2.5, we find that $H_2(S) = 2.246$.

Examples (Cont.)

- If S has q equiprobable symbols, then $p_i = 1/q$ for each i, so $H_r(S) = q \cdot \frac{1}{q} \log_r q = \log_r q$.
- Example 3.4 and 3.5
 - Let q = 5, $H_2(S) = log_2 5 \approx 2.321$
 - Let q = 6, $H_2(S) = log_2 6 \approx 2.586$
- Example 3.6.
 - Using the known frequencies of the letters of the alphabet, the entropy of English text has been computed as approximately 4.03.

Compare average word-length of binary Huffman coding with entropy

- As in Example 3.2 with p = 2/3
 - $H_2(S) \approx 0.918$
 - $L(C^1) \approx 1, L(C^2)/2 \approx 0.944, L(C^3)/3 \approx 0.938$
- As in Example 3.3
 - $H_2(S) \approx 2.246$
 - $L(C^1) \approx 2.3$
- As in Example 3.4
 - $H_2(S) \approx 2.246$
 - $L(C^1) \approx 2.321$

3.2 Properties of the Entropy Function

- Theorem 3.7
 - $H_r(S) \ge 0$, with equality if and only if $p_i = 1$ for some i (so that $p_j = 0$ for all $j \ne i$).
- Lemma 3.8
 - For all x > 0 we have $\ln x \le x 1$, with equality if and only if x = 1.
 - Converting to some other base r, we have $log_r(x) \le log_r(e) \cdot (x-1)$ with equality if and only if x = 1.

Properties of the Entropy Function

- Corollary 3.9
 - Let $x_i \ge 0$ and $y_i > 0$ for i = 1, ..., q, and let $\sum_i x_i = \sum_i y_i = 1$ (so (x_i) and (y_i) are probability distributions, with $y_i \ne 0$). Then

$$\sum_{i=1}^q x_i \log_r \frac{1}{x_i} \leq \sum_{i=1}^q x_i \log_r \frac{1}{y_i},$$

- (that is, $\sum_i x_i \log(y_i/x_i) \le 0$), with equality if and only if $x_i = y_i$ for all i.
- Theorem 3.10
 - If a source S has q symbols then $H_r(S) \leq log_r q$, with equality if and only if the symbols are equiprobable.

3.3 Entropy and Average Word-length

- Theorem 3.11
 - If C is any uniquely decodable r-ary code for a source S, then $L(C) \ge H_r(S)$.
- The interpretation
 - Each symbol emitted by S carries $H_r(S)$ units of information, on average.
 - Each code-symbol conveys one unit of information, so on average each code-word of C must contain at least $H_r(S)$ code-symbols, that is, $L(C) \ge H_r(S)$.
 - In particular, sources emitting more information require longer code-words.

Entropy and Average Word-length (Cont.)

- Corollary 3.12
 - Given a source S with probabilities p_i , there is a uniquely decodable r-ary code C for S with $L(C) = H_r(S)$ if and only if $log_r(p_i)$ is an integer for each i, that is, each $p_i = r^{e_i}$ for some integer $e_i \leq 0$.
- Example 3.13
 - If S has q = 3 symbols s_i , with probabilities $p_i = 1/4, 1/2$, and 1/4 (see Examples 1.2 and 2.1).
 - $H_2(S) =$
 - A binary Huffman code *C* for *S*:
 - L(C) =

More examples

- Example 3.14
 - Let S have q = 5 symbols, with probabilities $p_i = 0.3, 0.2, 0.2, 0.2, 0.1$, as in Example 2.5.
 - In Example 3.3, $H_2(S) = 2.246$, and
 - in Example 2.5, L(C) = 2.3, C binary Huffman code for S
 - By Theorem 2.8, every uniquely decodable binary code C for S satisfies $L(C) \ge 2.3 > H_2(S)$.
 - Thus no such code satisfies $L(C) = H_r(S)$
 - What is the reason?
- Example 3.15
 - Let S have 3 symbols s_i , with probabilities $p_i = \frac{1}{2}, \frac{1}{2}, 0$.

Code Efficiency and Redundancy

• If C is an r-ary code for a source S, its efficiency is defined to be

$$\eta = \frac{H_r(\mathcal{S})}{L(\mathcal{C})}, \qquad (3.4)$$

- So $0 \le \eta \le 1$ for every uniquely decodable code C for S
- The redundancy of C is defined to be $\bar{\eta} = 1 \eta$.
 - Thus increasing redundancy reduces efficiency
- In Examples 3.13 and 3.14,
 - $\eta = 1$ and $\eta \approx 0.977$, respectively.

3.4 Shannon-Fano Coding

- Shannon-Fano codes
 - close to optimal, but easier to estimate their average word lengths.
- A Shannon-Fano code C for S has word lengths

$$l_i = \lceil \log_r(1/p_i) \rceil, \qquad (3.5)$$

• So, we have

$$\log_r \frac{1}{p_i} \le l_i < 1 + \log_r \frac{1}{p_i}, \quad (3.6)$$
$$K = \sum_{i=1}^q r^{-l_i} \le \sum_{i=1}^q p_i = 1,$$

So Theorem 1.20 (Kraft's inequality) implies that there is an instantaneous r-ary code C for S with these word-lengths l_i

Shannon-Fano Coding (Cont.)

- Theorem 3.16
 - Every *r*-ary Shannon-Fano code *C* for a source *S* satisfies $H_r(S) \le L(C) \le 1 + H_r(S)$
- Corollary 3.17
 - Every optimal r-ary code D for a source S satisfies $H_r(S) \le L(\mathcal{D}) \le 1 + H_r(S)$
- Compute word length l_i of Shannon-Fano Code

 $l_i = \lceil \log_2(1/p_i) \rceil = \min\{n \in \mathbf{Z} \mid 2^n \ge 1/p_i\}$

Examples

- Example 3.18
 - Let S have 5 symbols, with probabilities p_i = 0.3, 0.2, 0.2, 0.2, 0.2, 0.1 as in Example 2.5
 - Compute Shannon-Fano code word length l_i , L(C), η .
 - Compare with Huffman code.
- Example 3.19
 - If p₁ = 1 and p_i = 0 for all i > 1, then H_r(S) = 0. An r-ary optimal code D for S has average word-length L(D) = 1, so here the upper bound 1 + H_r(S) is attained.

3.5 Entropy of Extensions and Products

- Recall from §2.6
 - S^n has q^n symbols $s_{i_1} \dots s_{i_n}$ with probabilities $p_{i_1} \dots p_{i_n}$.
- Theorem 3.20
 - If S is any source then $H_r(S^n) = nH_r(S)$.
- Lemma 3.21
 - If S and T are independent sources then $H_r(S \times T) = H_r(S) + H_r(T)$
- Corollary 3.22
 - If $S_1, ..., S_n$ are independent sources then $H_r(S_1 \times \cdots \times S_n) = H_r(S_1) + \cdots + H_r(S_n)$

3.6 Shannon's First Theorem

- Theorem 3.23
 - By encoding Sⁿ with n sufficiently large, one can find uniquely decodable r-ary encodings of a source S with average word-lengths arbitrarily close to the entropy H_r(S).
- Recall that
 - if a code for S^n has average word-length L_n , then as an encoding of S it has average word-length L_n/n .
- Note that
 - the encoding process of Sⁿ for a large n are complicated and time-consuming.
 - the decoding process involves delays

3.7 An Example of Shannon's First Theorem

- Let S be a source with two symbols s_1, s_2 of probabilities $p_i = 2/3$, 1/3, as in Example 3.2.
 - In §3.1, we have $H_2(S) = \log_2 3 \frac{2}{3} \approx 0.918$
 - In §2.6, using binary Huffman codes for S^n with n = 1, 2and 3, we have $L_n/n \approx 1$, 0.944 and 0.938
 - For larger *n* it is simpler to use Shannon-Fano codes, rather than Huffman codes.
 - Compute L_n for S^n
 - Verify $L_n/n \to H_2(S)$
 - Verify $L_n/n \to \pi_2(3)$ You will need to use this formula $(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k$