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The aim of this chapter

* Introduce the entropy function

* which measures the amount of information emitted by a
source

* Examine the basic properties of this function

* Show how it is related to the average word lengths
of encodings of the source



3.1 Information and Entropy

* Define a number I(s;), for each s; € S, which
represents

 How much information is gained by knowing that S has
emitted s;

* Our prior uncertainty as to whether s; will be emitted
and our surprise on learning that it has been emitted
* Therefore require that:

1) I(s;) is a decreasing function of the probability p; of
Si, with I(Sl’) =0if Di = 1;

2) I(s;sj) = I1(s;) +1(s;), where S emits s; and s;
consecutively and independently.



I

Entropy Function

I=-logp

 We define

1 RS
I(S‘i) T logp‘i = log ; (31) Figure 3.1

1

1

where p; = Pr(s;). So that I satisfies (1) and (2)

* Example 3.1

* Let S be an unbiased coin, with s; and s, representing
heads and tails. Then I(s;) =?and I(s,) =?

p



The r-ary Entropy of §

* The average amount of information conveyed by S
(per source-symbol) is given by the function

q
H.(S) = ZP?ZIT(S Zp‘ log,,, Pz — ZP% log, p;
i=1 1=1 i=1

* Called the r-ary entropy of S.

A

e Base r is often omitted

—plogp

H(S) = szlog—-“zpzlogpt [_\
I

! 1

Figure 3.2

p



Examples

H; (p)
* Example 3.2
* Let S have g = 2 symbols, with |
probabilitiesp and 1-p 1 1 p
* letp=1—p.Then Figure 3.3

H(S) = —plogp—plogp.  H(p) = —plogp — plogp.
* H(p) is maximal when p =7
* Compute H(p) whenp =% and p =2/3
* Example 3.3

* If S has g =5 symbols with probabilities p; = 0.3, 0.2, 0.2,
0.2,0.1, asin §2.2, Example 2.5, we find that H,(S) =
2.246.



Examples (Cont.)

* If S has g equiprobable symbols, then p; = 1/, for

each i, so 1
HT(S) = " E logrq - log-rQ'

* Example 3.4 and 3.5
e letq =5, H,(S) = log,5 = 2.321
e letq =6, H,(S) = log,6 = 2.586

* Example 3.6.

* Using the known frequencies of the letters of the
alphabet, the entropy of English text has been
computed as approximately 4.03.



Compare average word-length of
binary Huffman coding with entropy

* Asin Example 3.2 with p = 2/

* H,(S) =~ 0.918

o« L(CY) ~ 1,L(C?)/2 ~ 0.944, L(C3)/3 ~ 0.938
* Asin Example 3.3

* H,(S) ~ 2.246

¢« L(CY) ~ 2.3
* Asin Example 3.4

« H,(S) ~ 2.246

. L(CY) = 2.321



3.2 Properties of the Entropy Function

e Theorem 3.7

* H.(S) = 0, with equality if and only if p; = 1 for some i
(sothatp; = Oforallj #i).

* Lemma 3.8

* Forallx > 0 we havelnx < x — 1, with equality if and
only if x = 1.
e Converting to some other base r, we have
logr(x) < logy(e) - (x —1)
with equality if and only if x = 1.



Properties of the Entropy Function

* Corollary 3.9

* lLetx; = 0andy; > 0fori=1,..,q,andlet
i xi = 2; Vi = 1(so(x;) and (y;) are probability
distributions with Vi i 0). Then

Z x; log,. - < z T log,. ,

1=1
* (that s, leilog(yl/xl) < 0), W|th equality if and only if
= vy; for all i.

e Theorem 3.10

* If a source S has g symbols then H,.(S) < log,q, with
equality if and only if the symbols are equiprobable.



3.3 Entropy and Average Word-length

e Theorem 3.11

* If C is any uniquely decodable r-ary code for a source S,
then L(C) = H,.(S).

* The interpretation

* Each symbol emitted by S carries H,.(S) units of
information, on average.

* Each code-symbol conveys one unit of information, so
on average each code-word of C must contain at least
H..(S) code-symbols, thatis, L(C) = H,(S).

* |In particular, sources emitting more information require
longer code-words.



Entropy and Average Word-length
(Cont.)

e Corollary 3.12

* Given a source S with probabilities p;, there is a
uniquely decodable r-ary code C for S with L(C) =

H.(S) ifand only if log, (p;) is an integer for each i,
that is, each p; = r® for some integer e; < 0.

* Example 3.13
* If S has g = 3 symbols s;, with probabilities p; = 1/4,1/2,
and 174 (see Examples 1.2 and 2.1).
* Hy(S) =
* A binary Huffman code C for S:
N L(C) —



More examples

* Example 3.14

* Let S have g = 5 symbols, with probabilities p; =
0.3,0.2,0.2,0.2,0.1, as in Example 2.5.

* In Example 3.3, H,(S) = 2.246, and
* in Example 2.5, L(C) = 2.3, C binary Huffman code for S

By Theorem 2.8, every uniquely decodable binary code
C for S satisfies L(C) = 2.3 > H,(S).

* Thus no such code satisfies L(C) = H,-(S)
* What is the reason?

* Example 3.15

* Let S have 3 symbols s;, with probabilities p; = %, %, 0.



Code Efficiency and Redundancy

 If C is an r-ary code for a source S, its efficiency is
defined to be
_ H(5)
n= L(C) y

* So 0 < n < 1 forevery uniquely decodable code C for S

(3.4)

* The redundancy of C is definedtoben =1 —n.

* Thus increasing redundancy reduces efficiency

* In Examples 3.13 and 3.14,
*n=1andn = 0.977, respectively.



3.4 Shannon-Fano Coding

e Shannon-Fano codes

* close to optimal, but easier to estimate their average
word lengths.

* A Shannon-Fano code C for S has word lengths

li = rlogr(llpi).' ’ (3.5)
* So, we have

1 1 So Theorem 1.20 (Kraft's
log, — <l <1+ log, — (3.6) |inequality) implies that
1 q 1 there is an instantaneous
K=Y F12) p=l, r-ary code C for S with
i=1 i=1 these word-lengths [;




Shannon-Fano Coding (Cont.)

e Theorem 3.16

* Every r-ary Shannon-Fano code C for a source S satisfies
H,(S) < L(C) £ 1+ Hy(S5)

e Corollary 3.17

* Every optimal r-ary code D for a source S satisfies
H.(S) < L(D) <1+ H,.(S)
* Compute word length [; of Shannon-Fano Code

li = [logy(1/pi)] =min{n € Z | 2" > 1/p;}



Examples

* Example 3.18

* Let S have 5 symbols, with probabilities p;= 0.3, 0.2, 0.2,
0.2, 0.1 as in Example 2.5

* Compute Shannon-Fano code word length [;, L(C), 7.
 Compare with Huffman code.

* Example 3.19

e Ifpy=1landp; =0foralli>1,then H.(S) = 0. An r-ary
optimal code D for S has average word-length L(D) =
1, so here the upper bound 1 + H,.(S) is attained.



3.5 Entropy of Extensions and
Products

* Recall from §2.6
* §" has q" symbols s;_...s; with probabilities p; ...p; .

* Theorem 3.20
* If Sis any source then H,.(§™) = nH,(S).

* Lemma 3.21
* If Sand T are independent sources then H,.(§ X T) =
H,.(S) + H,(T)
e Corollary 3.22
e IfS¢, ..., 5, are independent sources then
Hp(S1 % -+ X 8p) = He(S1) + -+ + Hp(Sn)



3.6 Shannon's First Theorem

e Theorem 3.23

* By encoding S™ with n sufficiently large, one can find
uniquely decodable r-ary encodings of a source S with
average word-lengths arbitrarily close to the entropy
H,.(S).

e Recall that

* if a code for S™ has average word-length L, then as an
encoding of S it has average word-length L., /n.

 Note that

 the encoding process of S™ for a large n are complicated
and time-consuming.

* the decoding process involves delays



3.7 An Example of Shannon's First
Theorem

* Let S be a source with two symbols s;, s, of
probabilities p; = 2/3, 1/3, as in Example 3.2.
* In §3.1, we have H(S) =log, 3 — £ ~ 0.918
* In §2.6, using binary Huffman codes for S™ withn =1, 2
and 3, we have L, /n ~ 1, 0.944 and 0.938
* For larger n it is simpler to use Shannon-Fano codes,
rather than Huffman codes.
e Compute L, for S™
 Verify L,,/n — H,(S) n
* You will need to use this formula (1 + z)" Z ( )
k=




