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The aim of this chapter

• Introduce the entropy function 
• which measures the amount of information emitted by a 

source

• Examine the basic properties of this function
• Show how it is related to the average word lengths 

of encodings of the source



3.1 Information and Entropy

• Define a number , for each , which 
represents

• How much information is gained by knowing that has 
emitted 

• Our prior uncertainty as to whether will be emitted 
and our surprise on learning that it has been emitted

• Therefore require that:
is a decreasing function of the probability of 

, with if 
, where emits and 

consecutively and independently.



Entropy Function

• We define

where So that satisfies (1) and (2)

• Example 3.1
• Let be an unbiased coin, with and representing 

heads and tails. Then and 



The - Entropy of 

• The average amount of information conveyed by 
(per source-symbol) is given by the function

• Called the - entropy of .
• Base is often omitted



Examples

• Example 3.2
• Let have = 2 symbols, with 

probabilities and 1 -
• Let . Then

• is maximal when = ½
• Compute when = ½ and = 2⁄3

• Example 3.3
• If has = 5 symbols with probabilities = 0.3, 0.2, 0.2, 

0.2, 0.1, as in §2.2, Example 2.5, we find that 
.



Examples (Cont.)

• If has equiprobable symbols, then for 
each , so

• Example 3.4 and 3.5
• Let , 
• Let , 

• Example 3.6.
• Using the known frequencies of the letters of the 

alphabet, the entropy of English text has been 
computed as approximately 4.03.



Compare average word-length of 
binary Huffman coding with entropy
• As in Example 3.2 with 

•
• , 

• As in Example 3.3
•
•

• As in Example 3.4
•
•



3.2 Properties of the Entropy Function

• Theorem 3.7
• , with equality if and only if for some 

(so that for all .

• Lemma 3.8
• For all we have , with equality if and 

only if .
• Converting to some other base , we have

with equality if and only if .



Properties of the Entropy Function

• Corollary 3.9 
• Let and for =1, ..., q, and let 

(so ( ) and ( ) are probability 
distributions, with ). Then

• (that is, ), with equality if and only if 
for all 

• Theorem 3.10
• If a source has symbols then , with 

equality if and only if the symbols are equiprobable.



3.3 Entropy and Average Word-length

• Theorem 3.11
• If is any uniquely decodable - code for a source , 

then .

• The interpretation
• Each symbol emitted by carries units of 

information, on average.
• Each code-symbol conveys one unit of information, so 

on average each code-word of must contain at least 
code-symbols, that is, .

• In particular, sources emitting more information require 
longer code-words.



Entropy and Average Word-length 
(Cont.)
• Corollary 3.12

• Given a source with probabilities , there is a 
uniquely decodable -ary code for with 

if and only if is an integer for each , 
that is, each ೔ for some integer .

• Example 3.13
• If has = 3 symbols , with probabilities = 1⁄4,1⁄2, 

and 1⁄4 (see Examples 1.2 and 2.1). 
•
• A binary Huffman code for :
•



More examples

• Example 3.14
• Let have = 5 symbols, with probabilities 

, as in Example 2.5.
• In Example 3.3, ଶ = 2.246, and 
• in Example 2.5, binary Huffman code for 

• By Theorem 2.8, every uniquely decodable binary code 
for satisfies .

• Thus no such code satisfies 
• What is the reason?

• Example 3.15
• Let have 3 symbols , with probabilities , , 0.



Code Efficiency and Redundancy

• If is an -ary code for a source , its efficiency is 
defined to be

• So for every uniquely decodable code for 

• The redundancy of is defined to be 
• Thus increasing redundancy reduces efficiency

• In Examples 3.13 and 3.14, 
• and , respectively.



3.4 Shannon-Fano Coding

• Shannon-Fano codes 
• close to optimal, but easier to estimate their average 

word lengths.

• A Shannon-Fano code for has word lengths

• So, we have 
So Theorem 1.20 (Kraft's 
inequality) implies that 
there is an instantaneous 

-ary code for with 
these word-lengths 



Shannon-Fano Coding (Cont.)

• Theorem 3.16
• Every -ary Shannon-Fano code for a source satisfies

• Corollary 3.17
• Every optimal -ary code for a source satisfies

• Compute word length of Shannon-Fano Code



Examples

• Example 3.18
• Let have 5 symbols, with probabilities = 0.3, 0.2, 0.2, 

0.2, 0.1 as in Example 2.5
• Compute Shannon-Fano code word length , , .
• Compare with Huffman code.

• Example 3.19
• If = 1 and = 0 for all > 1, then . An -ary

optimal code for has average word-length 
, so here the upper bound 1 + is attained.



3.5 Entropy of Extensions and 
Products
• Recall from §2.6 

• has symbols 
భ ೙

with probabilities 
భ ೙

• Theorem 3.20
• If is any source then .

• Lemma 3.21
• If and are independent sources then 

• Corollary 3.22
• If are independent sources then



3.6 Shannon's First Theorem
• Theorem 3.23

• By encoding with sufficiently large, one can find 
uniquely decodable -ary encodings of a source with 
average word-lengths arbitrarily close to the entropy 

.
• Recall that

• if a code for has average word-length , then as an 
encoding of it has average word-length .

• Note that
• the encoding process of for a large are complicated 

and time-consuming. 
• the decoding process involves delays



3.7 An Example of Shannon's First 
Theorem
• Let be a source with two symbols , of 

probabilities , , as in Example 3.2.
• In §3.1, we have
• In §2.6, using binary Huffman codes for with = 1, 2 

and 3, we have
• For larger it is simpler to use Shannon-Fano codes, 

rather than Huffman codes.
• Compute ௡ for ௡

• Verify ௡ ଶ

• You will need to use this formula


