
Coding and Information Theory
Chapter 2

Optimal Codes
Xuejun Liang

2019 Fall

Chapter 2: Optimal Codes

• Need to balance between using words which are
• long enough to allow effective decoding, and
• short enough for economy

• Optimal codes
• the instantaneous codes with least average word length

Content of Chapter 2

2.1 Optimality
2.2 Binary Huffman Codes
2.3 Average Word-length of Huffman Codes
2.4 Optimality of Binary Huffman Codes
2.5 r-ary Huffman Codes
2.6 Extensions of Sources

• Let be a source and assume that the probabilities

where

• Assume code for has word-lengths . Then
the Average Word-Length is defined as

• Given and the probability distribution (), we try to
find instantaneous -ary codes minimizing .

• Such codes are called optimal or compact codes

2.1 Optimality

Optimality (Cont.)

• Example 2.1
• Let be the daily weather (as in Example 1.2)
• with
• Consider two instantaneous codes
•
•

•
•

Optimality (Cont.)

• Lemma 2.2
• Given a source and an integer , the set of all average

word-lengths of uniquely decodable -ary codes
for is equal to the set of all average word-lengths
of instantaneous -ary codes for .

• Definition
• An instantaneous -ary code is defined to be optimal if

, which is the greatest lower bound of
average word-lengths.

• Theorem 2.3
• Each source has an optimal -ary code for each integer

.

2.2 Binary Huffman Codes

• Let Given a
source , we renumber the
source-symbols , so
that

• Form a reduced source by
combining the two least-likely
symbols.

• Given any binary code for
, we can form a binary code
for :

Binary Huffman Codes (Cont.)

• Lemma 2.4
• If the code instantaneous then so is .

• Huffman code for
• Constructed by

• Note: } and
• It is instantaneous

• Example 2.5
• Let have = 5 symbols ,…, with probabilities

0.3, 0.2, 0.2, 0.2, 0.1. Compute Huffman code and

How the probability distribution affects the
average word-length of Huffman codes

• Example 2.6
• Let have = 5 symbols ,…, again, but now suppose

that they are equiprobable, that is, … = .
Compute Huffman code and .

• In general, the greater the variation among the
probabilities , the lower the average word-length
of an optimal code.

• Note: entropy can be used to measure the amount
of variation in a probability distribution.

• Will study later in next chapter.

2.3 Average Word-length of Huffman
Codes

• Note is the "new" probability created by reducing to .

• If we iterate this, using the fact that ,
we find that

• the sum of all the new probabilities
created in reducing to .

• Try Example 2.5 and Example 2.6

2.4 Optimality of Binary Huffman
Codes
• Definition

• Two binary words and to be siblings if they have
the form , (or vice versa) for some word .

• Lemma 2.7
• Every source has an optimal binary code in which

two of the longest code-words are siblings.

• Theorem 2.8
• If is a binary Huffman code for a source , then is an

optimal code for .

2.5 - Huffman Codes

• If we use an alphabet with | , then the
construction of -ary Huffman codes is similar to
that in the binary case.

• Merge source symbols together at a time
• Note: may need to add some dummy symbols such that

mod

• Example 2.9
• Let = 6 and = 3. Since - 1 = 2 we need mod

(), so we adjoin an extra symbol to , with = 0
• The reduction process now gives ……

- Huffman Codes (Cont.)

• Example 2.10
• Let = 6 and = 3 and suppose that the symbols

, of S have probabilities = 0.3, 0.2, 0.2, 0.1,
0.1, 0.1.

• After adjoining with = 0, we find that the reduction
process is as follows:

2.6 Extensions of Sources

• Let be a source with
• symbols of
• probabilities

• The n-th extension of is the source with
• symbols

೔ ೙
(

ೕ
)

• probabilities
೔ ೙

• Note: The probabilities
೔ ೙

form a probability
distribution by

• Expanding the left-hand side of the equation

Extensions of Sources: Examples

• Example 2.11
• Let have source = { } with = , = .
• Then has source alphabet = { , , , }

with probabilities .

• Example 2.12: is as in Example 2.11
• A binary Huffman code C:
• Average word-length
• Construct a Huffman code for
• Average word-length
• You will see)

Extensions of Sources: decoding

• Decode a pair (two consecutive symbols), rather
than one symbol, at a time.

• Not quite instantaneous
• A bounded delay while waiting for pairs to be completed

• Can construct a Huffman code for
• Can show

• Continuing this principle, construct a Huffman code
for

• the average word-length s

