Coding and Information Theory Chapter 2 Optimal Codes

Xuejun Liang
2019 Fall

Chapter 2: Optimal Codes

- Need to balance between using words which are
- long enough to allow effective decoding, and
- short enough for economy
- Optimal codes
- the instantaneous codes with least average word length

Content of Chapter 2

2.1 Optimality
2.2 Binary Huffman Codes
2.3 Average Word-length of Huffman Codes
2.4 Optimality of Binary Huffman Codes
2.5 r-ary Huffman Codes
2.6 Extensions of Sources

2.1 Optimality

- Let S be a source and assume that the probabilities

$$
p_{i}=\operatorname{Pr}\left(X_{n}=s_{i}\right)=\operatorname{Pr}\left(s_{i}\right)
$$

where

$$
0 \leq p_{i} \leq 1, \quad \sum_{i=1}^{q} p_{i}=1 .
$$

- Assume code C for S has word-lengths $l_{1}, l_{2}, \ldots l_{q}$. Then the Average Word-Length is defined as

$$
L=L(\mathcal{C})=\sum_{i=1}^{q} p_{i} l_{i}
$$

- Given r and the probability distribution $\left(p_{i}\right)$, we try to find instantaneous r-ary codes C minimizing $L(C)$.
- Such codes are called optimal or compact codes

Optimality (Cont.)

- Example 2.1
- Let S be the daily weather (as in Example 1.2)
- with $p_{i}=\frac{1}{4}, \frac{1}{2}, \frac{1}{4}$ for $i=1,2,3$.
- Consider two instantaneous codes
- binary code $\mathcal{C}: s_{1} \mapsto 00, s_{2} \mapsto 01, s_{3} \mapsto 1$
- $L(C)=$?
- binary code $\mathcal{D}: s_{1} \mapsto 00, s_{2} \mapsto 1, s_{3} \mapsto 01$
- $L(D)=$?

Optimality (Cont.)

- Lemma 2.2
- Given a source S and an integer r, the set of all average word-lengths $L(C)$ of uniquely decodable r-ary codes C for S is equal to the set of all average word-lengths $L(C)$ of instantaneous r-ary codes C for S.
- Definition
- An instantaneous r-ary code C is defined to be optimal if $L(C)=L_{\min }(S)$, which is the greatest lower bound of average word-lengths.
- Theorem 2.3
- Each source S has an optimal r-ary code for each integer $r \geq 2$.

2.2 Binary Huffman Codes

- Let $T=Z_{2}=\{0,1\}$, Given a source S, we renumber the source-symbols s_{1}, \ldots, s_{q}, so that

$$
p_{1} \geq p_{2} \geq \cdots \geq p_{q}
$$

- Form a reduced source S^{\prime} by combining the two least-likely symbols.
- Given any binary code C^{\prime} for S^{\prime}, we can form a binary code C for S :

Binary Huffman Codes (Cont.)

- Lemma 2.4
- If the code C^{\prime} instantaneous then so is C.
- Huffman code for S
- Constructed by

$$
\begin{aligned}
& \mathcal{S} \rightarrow \mathcal{S}^{\prime} \rightarrow \cdots \rightarrow \mathcal{S}^{(q-2)} \rightarrow \mathcal{S}^{(q-1)} \\
& \mathcal{C} \leftarrow \mathcal{C}^{\prime} \leftarrow \cdots \leftarrow \mathcal{C}^{(q-2)} \leftarrow \mathcal{C}^{(q-1)} .
\end{aligned}
$$

- Note: $C^{(q-1)}=\{\varepsilon\}$ and $C^{(q-2)}=\{\varepsilon 0, \varepsilon 1\}=\{0,1\}$
- It is instantaneous
- Example 2.5
- Let S have $q=5$ symbols s_{1}, \ldots, s_{5} with probabilities $p_{i}=$ $0.3,0.2,0.2,0.2,0.1$. Compute Huffman code and $L(C)$

How the probability distribution affects the average word-length of Huffman codes

- Example 2.6
- Let S have $q=5$ symbols s_{1}, \ldots, s_{5} again, but now suppose that they are equiprobable, that is, $p_{1}=\ldots=p_{5}=0.2$. Compute Huffman code and $L(C)$.
- In general, the greater the variation among the probabilities p_{i}, the lower the average word-length of an optimal code.
- Note: entropy can be used to measure the amount of variation in a probability distribution.
- Will study later in next chapter.

2.3 Average Word-length of Huffman Codes

$$
\begin{align*}
L(\mathcal{C})-L\left(\mathcal{C}^{\prime}\right) & =p_{q-1}(l+1)+p_{q}(l+1)-\left(p_{q-1}+p_{q}\right) l \\
& =p_{q-1}+p_{q} \\
& =p^{\prime} \tag{2.3}
\end{align*}
$$

- Note p^{\prime} is the "new" probability created by reducing S to S^{\prime}.
- If we iterate this, using the fact that $L\left(C^{(q-1)}\right)=|\varepsilon|=0$, we find that

$$
\begin{equation*}
L(C)=p^{\prime}+p^{\prime \prime}+\cdots+p^{(q-1)} \tag{2.4}
\end{equation*}
$$

- the sum of all the new probabilities $p^{\prime}, p^{\prime \prime}, \ldots, p^{(q-1)}$ created in reducing S to $S^{(q-1)}$.
- Try Example 2.5 and Example 2.6

2.4 Optimality of Binary Huffman Codes

- Definition
- Two binary words w_{1} and w_{2} to be siblings if they have the form $x 0, x 1$ (or vice versa) for some word $x \in T^{*}$.
- Lemma 2.7
- Every source S has an optimal binary code D in which two of the longest code-words are siblings.
- Theorem 2.8
- If C is a binary Huffman code for a source S, then C is an optimal code for S.

2.5 r-ary Huffman Codes

- If we use an alphabet T with $|T|=r>2$, then the construction of r-ary Huffman codes is similar to that in the binary case.
- Merge r source symbols together at a time
- Note: may need to add some dummy symbols such that

$$
q \equiv 1 \bmod (r-1)
$$

- Example 2.9
- Let $q=6$ and $r=3$. Since $r-1=2$ we need $\mathrm{q} \equiv 1 \bmod$ (2), so we adjoin an extra symbol s_{7} to S, with $p_{7}=0$
- The reduction process now gives

r-ary Huffman Codes (Cont.)

- Example 2.10
- Let $q=6$ and $r=3$ and suppose that the symbols s_{1}, \ldots, s_{6}, of S have probabilities $p_{i}=0.3,0.2,0.2,0.1$, 0.1, 0.1 .
- After adjoining s_{7} with $p_{7}=0$, we find that the reduction process is as follows:

2.6 Extensions of Sources

- Let S be a source with
- q symbols s_{1}, \ldots, s_{q} of
- probabilities p_{1}, \ldots, p_{q}
- The n-th extension S^{n} of S is the source with
- q^{n} symbols $s_{i_{i}} \ldots, s_{i_{n}}\left(s_{i_{j}} \in S\right)$
- probabilities $p_{i_{i}} \ldots, p_{i_{n}}$
- Note: The probabilities $p_{i_{i}} \ldots, p_{i_{n}}$ form a probability distribution by
- Expanding the left-hand side of the equation

$$
\left(p_{1}+\cdots+p_{q}\right)^{n}=1^{n}=1
$$

Extensions of Sources: Examples

- Example 2.11
- Let S have source $S=\left\{s_{1}, s_{2}\right\}$ with $p_{1}=2 / 3, p_{2}=1 / 3$.
- Then S^{2} has source alphabet $=\left\{s_{1} s_{1}, s_{1} s_{2}, s_{2} s_{1}, s_{2} s_{2}\right\}$ with probabilities $4 / 9,2 / 9,2 / 9,1 / 9$.
- Example 2.12: S is as in Example 2.11
- A binary Huffman code C: $s_{1} \mapsto 0, s_{2} \mapsto 1$
- Average word-length $L(C)=1$
- Construct a Huffman code C^{2} for S^{2}
- Average word-length $L\left(C^{2}\right)=$?
- You will see $L\left(C^{2}\right) / 2<L(C)=1$

Extensions of Sources: decoding

- Decode a pair (two consecutive symbols), rather than one symbol, at a time.
- Not quite instantaneous
- A bounded delay while waiting for pairs to be completed
- Can construct a Huffman code C^{3} for S^{3}
- Can show $L\left(C^{3}\right) / 3<L\left(C^{2}\right) / 2$
- Continuing this principle, construct a Huffman code C^{n} for S^{n}
- the average word-length $L\left(C^{n}\right) / n \rightarrow$? as $n \rightarrow \infty$

