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Chapter 2: Optimal Codes

• Need to balance between using words which are
• long enough to allow effective decoding, and 
• short enough for economy

• Optimal codes
• the instantaneous codes with least average word length
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• Let be a source and assume that the probabilities

where

• Assume code for has word-lengths . Then 
the Average Word-Length is defined as 

• Given and the probability distribution ( ), we try to 
find instantaneous -ary codes minimizing . 

• Such codes are called optimal or compact codes

2.1 Optimality



Optimality (Cont.)

• Example 2.1
• Let be the daily weather (as in Example 1.2)
• with  
• Consider two instantaneous codes 
•
•

•
•



Optimality (Cont.)

• Lemma 2.2
• Given a source and an integer , the set of all average 

word-lengths of uniquely decodable -ary codes 
for is equal to the set of all average word-lengths 
of instantaneous -ary codes for .

• Definition
• An instantaneous -ary code is defined to be optimal if 

, which is the greatest lower bound of 
average word-lengths.

• Theorem 2.3
• Each source has an optimal -ary code for each integer 

.



2.2 Binary Huffman Codes

• Let Given a 
source , we renumber the 
source-symbols , so 
that

• Form a reduced source by 
combining the two least-likely 
symbols.

• Given any binary code for 
, we can form a binary code 
for :



Binary Huffman Codes (Cont.)

• Lemma 2.4
• If the code instantaneous then so is .

• Huffman code for 
• Constructed by

• Note: } and 
• It is instantaneous

• Example 2.5
• Let have = 5 symbols ,…, with probabilities 

0.3, 0.2, 0.2, 0.2, 0.1. Compute Huffman code and 



How the probability distribution affects the 
average word-length of Huffman codes

• Example 2.6
• Let have = 5 symbols ,…, again, but now suppose 

that they are equiprobable, that is, … = . 
Compute Huffman code and .

• In general, the greater the variation among the 
probabilities , the lower the average word-length 
of an optimal code.

• Note: entropy can be used to measure the amount 
of variation in a probability distribution.

• Will study later in next chapter.



2.3 Average Word-length of Huffman 
Codes

• Note is the "new" probability created by reducing to . 

• If we iterate this, using the fact that , 
we find that

• the sum of all the new probabilities 
created in reducing to .

• Try Example 2.5 and Example 2.6



2.4 Optimality of Binary Huffman 
Codes
• Definition

• Two binary words and to be siblings if they have 
the form , (or vice versa) for some word .

• Lemma 2.7
• Every source has an optimal binary code in which 

two of the longest code-words are siblings.

• Theorem 2.8
• If is a binary Huffman code for a source , then is an 

optimal code for .



2.5 - Huffman Codes

• If we use an alphabet with | , then the 
construction of -ary Huffman codes is similar to 
that in the binary case.

• Merge source symbols together at a time
• Note: may need to add some dummy symbols such that

mod

• Example 2.9
• Let = 6 and = 3. Since - 1 = 2 we need mod 

( ), so we adjoin an extra symbol to , with = 0
• The reduction process now gives ……



- Huffman Codes (Cont.)

• Example 2.10
• Let = 6 and = 3 and suppose that the symbols 

, of S have probabilities = 0.3, 0.2, 0.2, 0.1, 
0.1, 0.1. 

• After adjoining with = 0, we find that the reduction 
process is as follows:



2.6 Extensions of Sources

• Let be a source with
• symbols of
• probabilities 

• The n-th extension of is the source with 
• symbols 

೔ ೙
(

ೕ
)

• probabilities
೔ ೙

• Note: The probabilities
೔ ೙

form a probability 
distribution by

• Expanding the left-hand side of the equation



Extensions of Sources: Examples

• Example 2.11
• Let have source = { } with = , = . 
• Then has source alphabet  = { , , , } 

with probabilities .

• Example 2.12: is as in Example 2.11
• A binary Huffman code C: 
• Average word-length 
• Construct a Huffman code for 
• Average word-length 
• You will see )



Extensions of Sources: decoding

• Decode a pair (two consecutive symbols), rather 
than one symbol, at a time.

• Not quite instantaneous
• A bounded delay while waiting for pairs to be completed

• Can construct a Huffman code for 
• Can show 

• Continuing this principle, construct a Huffman code 
for 

• the average word-length s 


