Coding and Information Theory Chapter 2 Optimal Codes

Xuejun Liang 2019 Fall

Chapter 2: Optimal Codes

- Need to balance between using words which are
 - long enough to allow effective decoding, and
 - short enough for economy
- Optimal codes
 - the instantaneous codes with least average word length

Content of Chapter 2

2.1 Optimality

- 2.2 Binary Huffman Codes
- 2.3 Average Word-length of Huffman Codes
- 2.4 Optimality of Binary Huffman Codes
- 2.5 r-ary Huffman Codes
- 2.6 Extensions of Sources

2.1 Optimality

• Let S be a source and assume that the probabilities

$$p_i = \Pr(X_n = s_i) = \Pr(s_i)$$

where

$$0 \le p_i \le 1, \qquad \sum_{i=1}^q p_i = 1.$$

• Assume code C for S has word-lengths $l_1, l_2, \dots l_q$. Then the Average Word-Length is defined as

$$L = L(\mathcal{C}) = \sum_{i=1}^{q} p_i l_i$$
.

- Given r and the probability distribution (p_i) , we try to find instantaneous r-ary codes C minimizing L(C).
 - Such codes are called optimal or compact codes

Optimality (Cont.)

- Example 2.1
 - Let S be the daily weather (as in Example 1.2)
 - with $p_i = \frac{1}{4}, \frac{1}{2}, \frac{1}{4}$ for i = 1, 2, 3.
 - Consider two instantaneous codes
 - binary code $\mathcal{C}: s_1 \mapsto 00, s_2 \mapsto 01, s_3 \mapsto 1$
 - L(C) = ?
 - binary code $\mathcal{D}: s_1 \mapsto 00, s_2 \mapsto 1, s_3 \mapsto 01$
 - L(D) = ?

Optimality (Cont.)

- Lemma 2.2
 - Given a source S and an integer r, the set of all average word-lengths L(C) of uniquely decodable r-ary codes C for S is equal to the set of all average word-lengths L(C) of instantaneous r-ary codes C for S.
- Definition
 - An instantaneous r-ary code C is defined to be optimal if $L(C) = L_{min}(S)$, which is the greatest lower bound of average word-lengths.
- Theorem 2.3
 - Each source S has an optimal r-ary code for each integer $r \ge 2$.

2.2 Binary Huffman Codes

• Let $T = Z_2 = \{0,1\}$, Given a source S, we renumber the source-symbols s_1, \dots, s_q , so that

 $p_1 \geq p_2 \geq \cdots \geq p_q$.

- Form a reduced source S' by combining the two least-likely symbols.
- Given any binary code C' for S', we can form a binary code C for S:

Binary Huffman Codes (Cont.)

- Lemma 2.4
 - If the code C' instantaneous then so is C.
- Huffman code for S
 - Constructed by $S \to S' \to \cdots \to S^{(q-2)} \to S^{(q-1)}$ $\mathcal{C} \leftarrow \mathcal{C}' \leftarrow \cdots \leftarrow \mathcal{C}^{(q-2)} \leftarrow \mathcal{C}^{(q-1)}.$
 - Note: $C^{(q-1)} = \{\varepsilon\}$ and $C^{(q-2)} = \{\varepsilon 0, \varepsilon 1\} = \{0, 1\}$
 - It is instantaneous
- Example 2.5
 - Let S have q = 5 symbols s_1, \dots, s_5 with probabilities $p_i = 0.3, 0.2, 0.2, 0.2, 0.1$. Compute Huffman code and L(C)

How the probability distribution affects the average word-length of Huffman codes

- Example 2.6
 - Let S have q = 5 symbols $s_1, ..., s_5$ again, but now suppose that they are equiprobable, that is, $p_1 = ... = p_5 = 0.2$. Compute Huffman code and L(C).
- In general, the greater the variation among the probabilities p_i , the lower the average word-length of an optimal code.
- Note: **entropy** can be used to measure the amount of variation in a probability distribution.
 - Will study later in next chapter.

2.3 Average Word-length of Huffman Codes

$$L(C) - L(C') = p_{q-1}(l+1) + p_q(l+1) - (p_{q-1} + p_q)l$$

= $p_{q-1} + p_q$
= p' , (2.3)

- Note p' is the "new" probability created by reducing S to S'.
- If we iterate this, using the fact that $L(C^{(q-1)}) = |\varepsilon| = 0$, we find that

$$L(C) = p' + p'' + \dots + p^{(q-1)}$$
 (2.4)

- the sum of all the new probabilities $p', p'', \dots, p^{(q-1)}$ created in reducing S to $S^{(q-1)}$.
 - Try Example 2.5 and Example 2.6

2.4 Optimality of Binary Huffman Codes

- Definition
 - Two binary words w_1 and w_2 to be siblings if they have the form x0, x1 (or vice versa) for some word $x \in T^*$.
- Lemma 2.7
 - Every source S has an optimal binary code D in which two of the longest code-words are siblings.
- Theorem 2.8
 - If C is a binary Huffman code for a source S, then C is an optimal code for S.

2.5 *r-ary* Huffman Codes

- If we use an alphabet T with |T| = r > 2, then the construction of r-ary Huffman codes is similar to that in the binary case.
 - Merge r source symbols together at a time
 - Note: may need to add some dummy symbols such that $q \equiv 1 \mod (r-1)$
- Example 2.9
 - Let q = 6 and r = 3. Since r 1 = 2 we need $q \equiv 1 \mod (2)$, so we adjoin an extra symbol s_7 to S, with $p_7 = 0$
 - The reduction process now gives

r-ary Huffman Codes (Cont.)

- Example 2.10
 - Let q = 6 and r = 3 and suppose that the symbols s₁, ..., s₆, of S have probabilities p_i = 0.3, 0.2, 0.2, 0.1, 0.1, 0.1.
 - After adjoining s_7 with $p_7 = 0$, we find that the reduction process is as follows:

2.6 Extensions of Sources

- Let S be a source with
 - q symbols s_1, \ldots, s_q of
 - probabilities p_1, \ldots, p_q
- The n-th extension S^n of S is the source with
 - q^n symbols $s_{i_i} \dots , s_{i_n} (s_{i_j} \in S)$
 - probabilities p_{i_i} ..., p_{i_n}
- Note: The probabilities $p_{i_i}\ldots$, p_{i_n} form a probability distribution by
 - Expanding the left-hand side of the equation

$$(p_1+\cdots+p_q)^n=1^n=1$$

Extensions of Sources: Examples

• Example 2.11

- Let S have source $S = \{s_1, s_2\}$ with $p_1 = 2/3$, $p_2 = 1/3$.
- Then S^2 has source alphabet = { s_1s_1 , s_1s_2 , s_2s_1 , s_2s_2 } with probabilities 4/9, 2/9, 2/9, 1/9.
- Example 2.12: S is as in Example 2.11
 - A binary Huffman code C: $s_1 \mapsto 0, \ s_2 \mapsto 1$
 - Average word-length L(C) = 1
 - Construct a Huffman code C^2 for S^2
 - Average word-length $L(C^2) = ?$
 - You will see $L(C^2)/2 < L(C) = 1$

Extensions of Sources: decoding

- Decode a pair (two consecutive symbols), rather than one symbol, at a time.
 - Not quite instantaneous
 - A bounded delay while waiting for pairs to be completed
- Can construct a Huffman code C^3 for S^3
 - Can show $L(C^3)/3 < L(C^2)/2$
- Continuing this principle, construct a Huffman code C^n for S^n
 - the average word-length $L(C^n)/n \rightarrow ?$ as $n \rightarrow \infty$