Coding and Information Theory

Mathematical Fundamentals (C)

Dr. Xuejun Liang

Quick Review of Last Lecture

- Field Definition and Examples
- Extension Field
- $Z_{p}[x] /(f)$: Galois field GF(p^{n})
- Examples
- Definition of Linear (vector) space

Linear (vector) space: Definition

A linear space V over a field F is a set whose elements are called vectors and where two operations, addition and scalar multiplication, are defined:

1. addition, denoted by + , such that to every pair $x, y \in V$ there correspond a vector $\mathrm{x}+\mathrm{y} \in \mathrm{V}$, and

- $x+y=y+x$,
- $x+(y+z)=(x+y)+z, x, y, z \in V$;
$(\mathrm{V},+$) is a group, with identity element denoted by 0 and inverse denoted by,$- x+(-x)=x-x=0$.

2. scalar multiplication of $x \in V$ by elements $k \in F$, denoted by $k x \in$ V, and

- $k(a x)=(k a) x$,
- $k(x+y)=k x+k y$,
- $(k+a) x=k x+a x, x, y \in V, k, a \in F$.

Moreover $1 \mathrm{x}=\mathrm{x}$ for all $\mathrm{x} \in \mathrm{V}, 1$ being the unit in F .

Subspace and Linearly independent

- Subspace: $\mathrm{S} \subseteq \mathrm{V}$
- addition and scalar multiplication are closed in S
- Linear combination
- $a_{1} v_{1}+a_{2} v_{2}+\ldots+a_{n} v_{n}$
- Linearly independent of $v_{1}, v_{2}, \ldots, v_{n}$
- If $a_{1} v_{1}+a_{2} v_{2}+\ldots+a_{n} v_{n}=0$ then $a_{1}=0, a_{2}=0, \ldots, a_{n}=0$.
- Linearly dependent of $v_{1}, v_{2}, \ldots, v_{n}$
- There are $a_{1}, a_{2}, \ldots, a_{n}$ (not all 0 's) such that

$$
a_{1} v_{1}+a_{2} v_{2}+\ldots+a_{n} v_{n}=0
$$

Example: determine if the three vectors over Z_{2} (GF(2)) are linearly dependent or not.

$$
\begin{aligned}
& \text { 1. } \mathbf{u}_{1}=\left(\begin{array}{lll}
1 & 0 & 1
\end{array}\right), \mathbf{u}_{2}=\left(\begin{array}{llll}
0 & 1 & 0 & 0
\end{array}\right), \text { and } \mathbf{u}_{3}=\left(\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right) \\
& \text { 2. } \mathbf{v}_{1}=\left(\begin{array}{lll}
0 & 1 & 1
\end{array} 0\right), \mathbf{v}_{2}=\left(\begin{array}{lll}
1 & \circ & 0
\end{array}\right) \text {, and } \mathbf{v}_{3}=\left(\begin{array}{lll}
1 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Basis and Dimension

- Basis (or Base)
- Basis: independent vectors that can span the whole vector space.
- Any vector is a linear combination of basis vectors.
- Dimension
- Number of vectors within the basis
- Example: V_{n} is n -dimension

Example: determine a basis and the dimension of the subspace S in V_{4} over Z_{2} consisting of vectors:

$$
\left.\begin{array}{lllll}
(0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{lllllll}
1 & 1 & 0 & 0
\end{array}\right)\left(\begin{array}{llllllll}
1 & 1 & 1 & 0
\end{array}\right)\left(\begin{array}{llllllll}
0 & 0 & 1
\end{array}\right)
$$

$v_{1}=\left(\begin{array}{llll}1 & 1 & 0 & 0\end{array}\right), v_{2}=\left(\begin{array}{lll}1 & 0 & 1\end{array} 0\right), v_{3}=\left(\begin{array}{llll}0 & 1 & 1 & 1\end{array}\right)$ are independent and

$$
a_{1} v_{1}+a_{2} v_{2}+a_{3} v_{3}, \text { where } a_{1}, a_{2}, a_{3} \in Z_{2} .
$$

generates vectors in S. So v_{1}, v_{2}, v_{3} is a basis of S.

$$
\begin{array}{ll}
0 v_{1}+0 v_{2}+0 v_{3} & =\left(\begin{array}{llll}
0 & 0 & 0 & 0
\end{array}\right) \\
0 v_{1}+0 v_{2}+1 v_{3}=v_{3} & =\left(\begin{array}{llll}
0 & 1 & 1 & 1
\end{array}\right) \\
0 v_{1}+1 v_{2}+0 v_{3}=v_{2} & =\left(\begin{array}{llll}
1 & 0 & 1 & 0
\end{array}\right) \\
0 v_{1}+1 v_{2}+1 v_{3}=v_{2}+v_{3} & =\left(\begin{array}{llll}
1 & 1 & 0 & 1
\end{array}\right) \\
1 v_{1}+0 v_{2}+0 v_{3}=v_{1} & =\left(\begin{array}{llll}
1 & 1 & 0 & 0
\end{array}\right) \\
1 v_{1}+0 v_{2}+1 v_{3}=v_{1}+v_{3} & =\left(\begin{array}{llll}
1 & 0 & 1 & 1
\end{array}\right) \\
1 v_{1}+1 v_{2}+0 v_{3}=v_{1}+v_{2} & =\left(\begin{array}{llll}
0 & 1 & 1 & 0
\end{array}\right) \\
1 v_{1}+1 v_{2}+1 v_{3}=v_{1}+v_{2}+v_{3} & =\left(\begin{array}{llll}
0 & 0 & 0 & 1
\end{array}\right)
\end{array}
$$

Orthogonality and Dual Space

- Orthogonality
- Inner product of $\mathbf{u}=\left(u_{0}, u_{1}, \ldots, u_{n-1}\right)$ and $\mathbf{v}=\left(v_{0}, v_{1}, \ldots, v_{n-1}\right)$:

$$
u \cdot \mathbf{v}=u_{0} v_{0}+u_{1} v_{1}+\ldots,+u_{n-1} v_{n-1}
$$

- \mathbf{u} and \mathbf{v} are said orthogonal if $\mathbf{u} \cdot \mathbf{v}=0$
- Subspaces S and P of V_{n} are said orthogonal if for any $u \in S$ and any $\mathbf{v} \in P$, we have $\mathbf{u} \cdot \mathbf{v}=0$
- Dual Space
- Subspace S of V_{n} is the dual space (null space) of another subspace P of V_{n} if S and P are orthogonal and

$$
\operatorname{dim}(\mathrm{S})+\operatorname{dim}(\mathrm{P})=\mathrm{n}
$$

Example: Show S and P are dual each other

$$
\begin{aligned}
& S=\left\{(00000),\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right),\left(\begin{array}{llll}
1 & 1 & 1
\end{array}\right),\left(\begin{array}{lll}
0 & 1 & 1
\end{array}\right)\right. \\
& P=\left\{(00000),\left(\begin{array}{lll}
1 & 1 & 0
\end{array}\right),\left(\begin{array}{lll}
1 & 1 & 1
\end{array}\right),\left(\begin{array}{lll}
0 & 1 & 1
\end{array}\right)\right.
\end{aligned}
$$

Matrix

$$
\mathbf{G}=\left[\begin{array}{ccccc}
g_{00} & g_{01} & g_{02} & \cdots & g_{0, n-1} \\
g_{10} & g_{11} & g_{12} & \cdots & g_{1, n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
g_{m-1,0} & g_{m-1,1} & g_{m-1,2} & \cdots & g_{m-1, n-1}
\end{array}\right]
$$

- Let G be a $m \times n$ matrix
- All linear combinations of row vectors of G is a subspace of V_{n}, called row vector space of G.
- All linear combinations of column vectors of G is a subspace of V_{m} called column vector space of G.
- The dimension of row vector space is called row rank and the dimension of column vector space is called column rank.
- Row rank and column are always equal, it is called the rank of the matrix.
- Elementary row operations of a matrix
- swap two rows, multiply a row with a scalar, add multiple of a row to another
- Elementary row operations do not change the row rank.

Example: Determine the row space of matrix over Z_{2}

$$
\mathrm{G}=\left(\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 0
\end{array}\right)
$$

$$
\begin{aligned}
& \text { Let } v_{1}=\left(\begin{array}{lll}
1 & 0 & 0
\end{array} 101\right), v_{2}=\left(\begin{array}{llll}
0 & 1 & 0 & 0
\end{array} 11\right), v_{3}=\left(\begin{array}{lll}
0 & 0 & 1
\end{array} 110\right) \text {, then } \\
& a_{1} v_{1}+a_{2} v_{2}+a_{3} v_{3} \text {, where } a_{1}, a_{2}, a_{3} \in Z_{2} .
\end{aligned}
$$

$$
\begin{array}{ll}
0 v_{1}+0 v_{2}+0 v_{3} & =\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \\
0 v_{1}+0 v_{2}+1 v_{3}=v_{3} & =\left(\begin{array}{llllll}
0 & 0 & 1 & 1 & 1 & 1
\end{array}\right) \\
0 v_{1}+1 v_{2}+0 v_{3}=v_{2} & =\left(\begin{array}{llllll}
0 & 1 & 0 & 0 & 1 & 1
\end{array}\right) \\
0 v_{1}+1 v_{2}+1 v_{3}=v_{2}+v_{3} & =\left(\begin{array}{lllllll}
0 & 1 & 1 & 1 & 0 & 1
\end{array}\right) \\
1 v_{1}+0 v_{2}+0 v_{3}=v_{1} & =\left(\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 1
\end{array}\right) \\
1 v_{1}+0 v_{2}+1 v_{3}=v_{1}+v_{3} & =\left(\begin{array}{llllll}
1 & 0 & 1 & 0 & 1 & 1
\end{array}\right) \\
1 v_{1}+1 v_{2}+0 v_{3}=v_{1}+v_{2} & =\left(\begin{array}{llllll}
1 & 1 & 0 & 1 & 1 & 0
\end{array}\right) \\
1 v_{1}+1 v_{2}+1 v_{3}=v_{1}+v_{2}+v_{3} & =\left(\begin{array}{llllll}
1 & 1 & 1 & 0 & 0 & 0
\end{array}\right)
\end{array}
$$

Example:

- Consider the G in previous example. Compute a matric G^{\prime} by adding row 3 of G to row 1 of G and then interchanging rows 2 and 3 of G .
- Show that the row space of G^{\prime} is the same as that generated by G .

$$
\mathrm{G}=\left(\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 0
\end{array}\right) \quad \Longrightarrow \quad \mathrm{G}^{\prime}=\left(\begin{array}{llllll}
1 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 1
\end{array}\right)
$$

$$
\begin{aligned}
& a_{1} v_{1}+a_{2} v_{2}+a_{3} v_{3} \text {, where } a_{1}, a_{2}, a_{3} \in Z_{2} . \\
& \text { generates the following vectors }
\end{aligned}
$$

$$
\left.\begin{array}{ll}
0 v_{1}+0 v_{2}+0 v_{3} & =\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \\
0 v_{1}+0 v_{2}+1 v_{3}=v_{3} & =\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 1
\end{array}\right)
\end{array}\right)
$$

Matrix Multiplication and Transpose

Assume $A=\left(a_{i j}\right)_{m \times k}$ and $B=\left(b_{i j}\right)_{k \times n}$
Then, $C=A B=\left(c_{i j}\right)_{m \times n}$, where

$$
c_{i j}=\sum_{l=1}^{k} a_{i l} b_{l j}
$$

The transpose of matrix A is defined as $A^{T}=\left(a_{j i}\right)_{k \times m}$

$$
\begin{array}{ll}
A=\left(\begin{array}{cc}
2 & 1 \\
-1 & 3
\end{array}\right) & B=\left(\begin{array}{lll}
2 & 1 & 2 \\
1 & 2 & 2
\end{array}\right) \quad A B= \\
A^{T}= & B^{T}=
\end{array}
$$

Linear Equations and Matrix

Assume $A=\left(a_{i j}\right)_{m \times n}$ and $X=\left(\begin{array}{c}x_{1} \\ x_{2} \\ . \\ x_{n}\end{array}\right)_{n \times 1}$. Then, we have

$$
A X=\left(\begin{array}{c}
a_{11} a_{12} \ldots a_{1 n} \\
a_{21} a_{22} \ldots \\
\vdots \\
\cdot \\
a_{m 1} a_{m 2} \ldots \\
a_{2 n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\cdot \\
\cdot \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}
\end{array}\right)
$$

A set of m simultaneous linear equations have two equivalent representations

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=0 \\
& a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=0 \\
& \ldots \ldots \ldots \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=0
\end{aligned} \quad\left(\begin{array}{c}
a_{11} a_{12} \ldots a_{1 n} \\
a_{21} a_{22} \ldots . a_{2 n} \\
\cdot \\
a_{m 1} a_{m 2} \ldots a_{m n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\cdot \\
\cdot \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\cdot \\
\cdot \\
0
\end{array}\right)
$$

