Coding and Information Theory

 Chapter 6:
Error-correcting Codes - D

Xuejun Liang
Fall 2022

Chapter 6: Error-correcting Codes

1. Introductory Concepts
2. Examples of Codes
3. Minimum Distance
4. Hamming's Sphere-packing Bound
5. The Gilbert-Varshamov Bound
6. Hadamard Matrices and Codes

Quick Review of Last Lecture (1/2)

- Hamming's Sphere-packing Bound
- Theorem 6.15: $\mathrm{n}, \mathrm{q}, \mathrm{d}, \mathrm{t}=\lfloor(\mathrm{d}-1) / 2\rfloor$

$$
M\left(1+\binom{n}{1}(q-1)+\binom{n}{2}(q-1)^{2}+\cdots+\binom{n}{t}(q-1)^{t}\right) \leq q^{n}
$$

- Example 6.16: $q=2$ and $t=1, \quad M \leq\left[2^{n} /(1+n)\right]$
- Corollary 6.17: For linear code
- A code C is perfect

$$
\sum_{i=0}^{t}\binom{n}{i}(q-1)^{i} \leq q^{n-k}
$$

- Example 6.18: R_{n} is perfect, if n is odd and $\mathrm{q}=2$.
- Example 6.19: The binary Hamming code H_{7} is perfect.
- Hamming's upper bound

$$
H_{2}\left(\frac{t}{n}\right) \leq 1-R
$$

Quick Review of Last Lecture (2/2)

- Hamming's Sphere-packing Bound
- For a code C with maximum number of cardinality $\mathrm{M}=A_{q}(n, d)$

$$
A_{q}(n, d)\left(1+\binom{n}{1}(q-1)+\binom{n}{2}(q-1)^{2}+\cdots+\binom{n}{t}(q-1)^{t}\right) \leq q^{n}
$$

- The Gilbert-Varshamov Bound
- Theorem 6.21

$$
A_{q}(n, d)\left(1+\binom{n}{1}(q-1)+\binom{n}{2}(q-1)^{2}+\cdots+\binom{n}{d-1}(q-1)^{d-1}\right) \geq q^{n}
$$

- Example 6.20

$$
A_{2}(n, 3) \leq\left\lfloor 2^{n} /(n+1)\right\rfloor
$$

- Example 6.22

$$
A_{2}(n, 3)\left(1+n+\frac{n(n-1)}{2}\right) \geq 2^{n}
$$

The Gilbert-Varshamov Bound (Cont.)

- In the binary case, Theorem 6.21 takes the form

$$
A_{2}(n, d)\left(1+\binom{n}{1}+\binom{n}{2}+\cdots+\binom{n}{d-1}\right) \geq 2^{n} .
$$

- For $Q<1 / 2$, Exercise 5.7 gives

$$
\sum_{i \leq n Q}\binom{n}{i} \leq 2^{n H(Q)} \longrightarrow \sum_{i \leq(d-1)}\binom{n}{i} \leq 2^{H_{2}\left(\frac{d-1}{n}\right)} \quad \begin{aligned}
& n Q=d-1 \\
& Q=\frac{d-1}{n}
\end{aligned}
$$

- So for $d \leq\lfloor n / 2\rfloor$, we have

$$
A_{2}(n, d) \geq 2^{n} / 2^{n H_{2}\left(\frac{d-1}{n}\right)}=2^{n\left(1-H_{2}\left(\frac{d-1}{n}\right)\right)}
$$

- Taking logarithms in both sides, we have

$$
\log _{2} A_{2}(n, d) \geq n\left(1-H_{2}\left(\frac{d-1}{n}\right)\right)
$$

The Gilbert-Varshamov Bound (Cont.)

- For $d \leq\lfloor n / 2\rfloor$, we have

$$
\log _{2} A_{2}(n, d) \geq n\left(1-H_{2}\left(\frac{d-1}{n}\right)\right)
$$

- Thus for $d \leq\lfloor n / 2\rfloor$, we have a lower bound

$$
R \geq 1-H_{2}\left(\frac{d-1}{n}\right) . \quad R=\frac{1}{n} \log _{2} M
$$

- From Section 6.4, we have Hamming's upper bound

$$
R \leq 1-H_{2}\left(\frac{t}{n}\right) \quad \text { See (6.7) }
$$

where $t=\lfloor(d-1) / 2\rfloor$

6.6 Hadamard Matrices and Codes

- A real $n \times n$ matrix $H=\left(h_{i j}\right)$ (of order n) is called a Hadamard matrix, if it satisfies
a) each $h_{i j}= \pm 1$, and
b) distinct rows r_{i}, of H are orthogonal, that is, $r_{i} \cdot r_{j}=0$ for all $i \neq j$.
- Note: $|\operatorname{det}(H)|=n^{n / 2}$
- Proof: Let

$$
\begin{aligned}
& H=\left(\begin{array}{l}
r_{1} \\
r_{2} \\
\ldots \\
r_{n}
\end{array}\right) \Rightarrow H H^{T}=\left(\begin{array}{lll}
r_{1} r_{1} & r_{1} r_{2} & r_{1} r_{n} \\
r_{2} r_{1} & r_{2} r_{2} & r_{2} r_{2} \\
r_{n} r_{1} & r_{n} r_{2} & r_{n} r_{n}
\end{array}\right)=\left(\begin{array}{lll}
n & 0 & 0 \\
0 & n & 0 \\
0 & 0 & n
\end{array}\right) \\
& H^{T}=\left(\begin{array}{llll}
r_{1} & r_{2} & \cdots & r_{n}
\end{array}\right) \\
& \operatorname{det}\left(H^{T}\right)=\operatorname{det}(H) \quad \operatorname{det}(H)^{2}=\operatorname{det}\left(H H^{T}\right)=n^{n}
\end{aligned}
$$

Hadamard Matrices (Cont.)

- Example 6.23
- The matrices $\mathrm{H}=(1)$ and $\left(\begin{array}{ll}1 & 1 \\ 1 & -\end{array}\right)$ are Hadamard matrices of order 1 and 2 , with $|\operatorname{det} H|=1$ and 2 respectively.
- Lemma 6.24
- Let H be a Hadamard matrix of order n, and let

$$
H^{\prime}=\left(\begin{array}{cc}
H & H \\
H & -H
\end{array}\right)
$$

Then H^{\prime} is a Hadamard matrix of order $2 n$.

Hadamard Matrices (Cont.)

- Corollary 6.25
- There is a Hadamard matrix of order 2^{m} for each integer $m \geq 0$.
- Proof: Start with H = (1), and apply Lemma 6.24 m times
- Example 6.26
- The Hadamard matrices of order 2^{m} obtained by this method are called Sylvester matrices. For instance, taking m = 1 or 2,
- Lemma 6.27

If there is a Hadamard matrix H of order $n>1$, then n is even.
The orthogonality of distinct rows \mathbf{r}_{i} and \mathbf{r}_{j} gives

$$
\begin{array}{r}
h_{i 1} h_{j 1}+\cdots+h_{i n} h_{j n}=0 . \\
h_{i k} h_{j k}= \pm 1
\end{array} \Rightarrow n \text { must be even. }
$$

- Lemma 6.28

If there is a Hadamard matrix H of order $n>2$, then n is divisible by 4.

$$
\begin{aligned}
& \hline r_{1}=\left(\begin{array}{lllllll|}
1 & 1 & \ldots & 1 & 1 & 1 & \ldots \\
\hline & 1
\end{array}\right) \\
& \hline \mathbf{r}_{2}=\left(\begin{array}{llllll}
1 & 1 & \ldots & 1 & -1 & -1
\end{array} \ldots\right. \\
& \hline r_{3}=\left(\begin{array}{lll}
& u 1^{\prime} s & \\
& v 1^{\prime} s &
\end{array}\right) \\
& \hline 0=\mathbf{r}_{1} \cdot \mathbf{r}_{3}=u-\left(\frac{n}{2}-u\right)+v-\left(\frac{n}{2}-v\right)=2 u+2 v-n \\
& 0=\mathbf{r}_{2} \cdot \mathbf{r}_{3}=u-\left(\frac{n}{2}-u\right)-v+\left(\frac{n}{2}-v\right)=2 u-2 v \\
& \hline
\end{aligned}
$$

$$
\text { so } u=v \text {, and hence } n=2 u+2 v=4 u \text { is divisible by } 4 .
$$

Hadamard Matrices and Codes

- Theorem 6.29
- Each Hadamard matrix H of order n gives rise to a binary code of length n, with $M=2 n$ code-words and minimum distance $d=n / 2$.
- Any code C constructed as in Theorem 6.29 is called a Hadamard code of length n.

$$
\begin{aligned}
& \text { Form } 2 \mathrm{n} \text { vectors from the rows } r_{i} \text { of } H \quad \pm \mathbf{r}_{1}, \ldots, \pm \mathbf{r}_{n} \in \mathbf{R}^{n} \\
& \text { Changing each entry -1 into } 0 \text { to get } \\
& \mathbf{u}_{1}, \overline{\mathbf{u}}_{1}, \ldots, \mathbf{u}_{n}, \overline{\mathbf{u}}_{n} \in \mathcal{V}=F_{2}^{n} \\
& \text { where } \overline{\mathbf{u}}=\mathbf{1}-\mathbf{u} \text {. } \\
& d\left(\mathbf{u}_{i}, \overline{\mathbf{u}}_{i}\right)=n \\
& d\left(u_{i}, u_{j}\right)=n / 2 \\
& d=n / 2
\end{aligned}
$$

Hadamard Codes

- The transmission rate of any Hadamard code of length n is

$$
R=\frac{\log _{2}(2 n)}{n}=\frac{1+\log _{2} n}{n} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

- The number of errors corrected (if $n>2$) is

$$
t=\left\lfloor\frac{d-1}{2}\right\rfloor=\left\lfloor\frac{n-2}{4}\right\rfloor=\frac{n}{4}-1
$$

- so the proportion of errors corrected is

$$
\frac{t}{n}=\frac{1}{4}-\frac{1}{n} \rightarrow \frac{1}{4} \quad \text { as } \quad n \rightarrow \infty
$$

