Coding and Information Theory

 Chapter 4 Information Channels - AXuejun Liang

Fall 2022

Quick Review of Last Lecture

- Shannon-Fane Coding examples

$$
l_{i}=\left\lceil\log _{2}\left(1 / p_{i}\right)\right\rceil=\min \left\{n \in \mathbf{Z} \mid 2^{n} \geq 1 / p_{i}\right\}
$$

- Entropy of Extensions and Products

$$
H_{r}\left(S^{n}\right)=n H_{r}(S) .
$$

- Shannon's First Theorem

$$
\lim _{n \rightarrow \infty} \frac{L_{n}}{n}=H_{r}(\mathcal{S}) .
$$

- An Example of Shannon's First Theorem S has two symbols s_{1}, s_{2} of probabilities $p_{i}=2 / 3,1 / 3$

Chapter 4: Information Channels

1. Notation and Definitions
2. The Binary Symmetric Channel
3. System Entropies
4. System Entropies for the Binary Symmetric Channel
5. Extension of Shannon's First Theorem to Information Channels
6. Mutual Information
7. Mutual Information for the Binary Symmetric Channel
8. Channel Capacity

The aim of this chapter

- We Consider
- a source sending messages through an unreliable (or noisy) channel to a receiver
- Our aim here is
- to measure how much information is transmitted, and how much is lost in this process, using several different variations of the entropy function, and then
- to relate this to the average word-length of the code used.

4.1 Notation and Definitions

- Information channel Γ
- Input of Γ : Source A,
$a_{i} \longmapsto b_{i}$

- with finite alphabet A of symbols $a=a_{1}, \ldots, a_{r}$, having probabilities

$$
\begin{array}{ll}
p_{i}=\operatorname{Pr}\left(a=a_{i}\right) & \text { where } \\
0 \leq p_{i} \leq 1
\end{array} \quad \text { and } \quad \sum_{i=1}^{r} p_{i}=1
$$

- Output of Γ : Source B,

Example 4.1

- Binary symmetric channel (BSC)
- $\mathrm{A}=\mathrm{B}=Z_{2}=\{0,1\}$.
- Each input symbol $a=0$ or 1 is correctly transmitted with probability P, and is incorrectly transmitted (as $\bar{a}=1-a$) with probability $\bar{P}=1-P$, for some constant $P(0 \leq P \leq 1)$.

Example 4.2

- Binary erasure channel (BEC)
- $\mathrm{A}=Z_{2}=\{0,1\}$.
- $B=\{0,1, ?\}$.
- Each input symbol $a=0$ or 1 is correctly transmitted with probability P, and is erased (or made illegible) with probability \bar{P}, indicated by an output symbol $b=$?

Forward Probabilities

- Forward probabilities of Γ

$$
P_{i j}=\operatorname{Pr}\left(b=b_{j} \mid a=a_{i}\right)=\operatorname{Pr}\left(b_{j} \mid a_{i}\right)
$$

- We have $\sum_{j=1}^{s} P_{i j}=1$
- The channel matrix $\quad M=\left(P_{i j}\right)=$

$$
M=\left(P_{i j}\right)=\left(\begin{array}{ccc}
P_{11} & \ldots & P_{1 s} \\
\vdots & & \vdots \\
P_{r 1} & \ldots & P_{r s}
\end{array}\right)
$$

Forward Probabilities - Binary channel

Channel:
r input symbols
s output symbols

$$
M=\left(P_{i j}\right)=\left(\begin{array}{ccc}
P_{11} & \ldots & P_{1 s} \\
\vdots & & \vdots \\
P_{r 1} & \ldots & P_{r s}
\end{array}\right)
$$

$$
\sum_{j=1}^{s} P_{i j}=1
$$

$$
P_{i j}=\operatorname{Pr}\left(b=b_{j} \mid a=a_{i}\right)=\operatorname{Pr}\left(b_{j} \mid a_{i}\right)
$$

Binary channel

$$
M=\left(\begin{array}{ll}
P_{00} & P_{01} \\
P_{10} & P_{11}
\end{array}\right)
$$

$$
P_{00}=\operatorname{Pr}(b=0 \mid a=0)
$$

$$
P_{01}=\operatorname{Pr}(b=1 \mid a=0)
$$

$$
P_{10}=\operatorname{Pr}(b=0 \mid a=1)
$$

$$
P_{11}=\operatorname{Pr}(b=1 \mid a=1)
$$

Forward Probabilities - BSC

Channel:
r input symbols
s output symbols

$$
M=\left(P_{i j}\right)=\left(\begin{array}{ccc}
P_{11} & \ldots & P_{1 s} \\
\vdots & & \vdots \\
P_{r 1} & \ldots & P_{r s}
\end{array}\right)
$$

$$
\sum_{j=1}^{s} P_{i j}=1
$$

$P_{i j}=\operatorname{Pr}\left(b=b_{j} \mid a=a_{i}\right)=\operatorname{Pr}\left(b_{j} \mid a_{i}\right)$

BSC

$$
M=\left(\begin{array}{cc}
P & \bar{P} \\
\bar{P} & P
\end{array}\right)
$$

Forward Probabilities - BEC

Channel:
r input symbols
s output symbols

$$
M=\left(P_{i j}\right)=\left(\begin{array}{ccc}
P_{11} & \ldots & P_{1 s} \\
\vdots & & \vdots \\
P_{r 1} & \ldots & P_{r s}
\end{array}\right)
$$

$$
\sum_{j=1}^{s} P_{i j}=1
$$

$P_{i j}=\operatorname{Pr}\left(b=b_{j} \mid a=a_{i}\right)=\operatorname{Pr}\left(b_{j} \mid a_{i}\right)$

BEC

$$
M=\left(\begin{array}{ccc}
P & 0 & \bar{P} \\
0 & P & \bar{P}
\end{array}\right)
$$

Combining two channels

- Sum $\Gamma+\Gamma^{\prime}$
- If Γ and Γ^{\prime} have disjoint input alphabets A and A^{\prime}, and disjoint output alphabets B and B^{\prime}, then the sum $\Gamma+\Gamma^{\prime}$ has input and output alphabets $A \cup A^{\prime}$ and $B \cup B^{\prime}$.
- Each input symbol is transmitted through Γ or Γ^{\prime}, so the channel matrix is a block matrix

$$
\left(\begin{array}{cc}
M & O \\
O & M^{\prime}
\end{array}\right)
$$

where M and M^{\prime} are the channel matrices for Γ and Γ^{\prime}.

The channel relationships

- The channel relationships

$$
\begin{gather*}
\qquad \sum_{i=1}^{r} p_{i} P_{i j}=q_{j} \tag{4.2}\\
\text { Where } p_{i}=\operatorname{Pr}\left(a=a_{i}\right), q_{j}=\operatorname{Pr}\left(b=b_{j}\right) \text { and } \\
P_{i j}=\operatorname{Pr}\left(b=b_{j} \mid a=a_{i}\right)=\operatorname{Pr}\left(b_{j} \mid a_{i}\right)
\end{gather*}
$$

The channel relationships: Cont.

- The channel relationships

$$
\begin{equation*}
\sum_{i=1}^{r} p_{i} P_{i j}=q_{j} \tag{4.2}
\end{equation*}
$$

(4.2) can be written as

$$
\mathbf{p} M=\mathbf{q}
$$

- The backward probabilities

$$
Q_{i j}=\operatorname{Pr}\left(a=a_{i} \mid b=b_{j}\right)=\operatorname{Pr}\left(a_{i} \mid b_{j}\right)
$$

- The joint probabilities

$$
R_{i j}=\operatorname{Pr}\left(a=a_{i} \text { and } b=b_{j}\right)=\operatorname{Pr}\left(a_{i}, b_{j}\right)
$$

Bayes' Formula

- Bayes' Formula

$$
\begin{equation*}
Q_{i j}=\frac{p_{i}}{q_{j}} P_{i j} \tag{4.3}
\end{equation*}
$$

$$
\begin{aligned}
p_{i} P_{i j} & =\operatorname{Pr}\left(a_{i}\right) \operatorname{Pr}\left(b_{j} \mid a_{i}\right) \\
& =\operatorname{Pr}\left(a_{i}, b_{j}\right)=R_{i j} \\
q_{j} Q_{i j} & =\operatorname{Pr}\left(b_{j}\right) \operatorname{Pr}\left(a_{i} \mid b_{j}\right) \\
& =\operatorname{Pr}\left(a_{i}, b_{j}\right)=R_{i j}
\end{aligned}
$$

- Combining this with (4.2) we get

$$
\begin{equation*}
Q_{i j}=\frac{p_{i} P_{i j}}{\sum_{k=1}^{r} p_{k} P_{k j}} \tag{4.4}
\end{equation*}
$$

Example: In a binary communication system below. Given

$$
\begin{aligned}
& p_{0}=P(a=0)=0.5, \\
& P_{01}=P(b=1 \mid a=0)=0.2 \text { and } \\
& P_{10}=P(a=0 \mid b=1)=0.1,
\end{aligned}
$$

(a) Find $q_{0}=P(b=0)$ and $q_{1}=P(b=1)$.
(b) Find $Q_{11}=P(a=1 \mid b=1)$

(c) Find $Q_{00}=P(a=0 \mid b=0)$

To solve (a) Using the channel relationships formular (4.2)

$$
\begin{aligned}
& q_{0}=P_{00} \times p_{0}+P_{10} \times p_{1}=0.8 \times 0.5+0.1 \times 0.5=0.45 \\
& q_{1}=P_{01} \times p_{0}+P_{11} \times p_{1}=0.2 \times 0.5+0.9 \times 0.5=0.55
\end{aligned}
$$

Example: In a binary communication system below. Given

$$
\begin{aligned}
& p_{0}=P(a=0)=0.5 \\
& P_{01}=P(b=1 \mid a=0)=0.2 \text { and } \\
& P_{10}=P(a=0 \mid b=1)=0.1
\end{aligned}
$$

(a) Find $q_{0}=P(b=0)$ and $q_{1}=P(b=1)$.
(b) Find $Q_{11}=P(a=1 \mid b=1)$

(c) Find $Q_{00}=P(a=0 \mid b=0)$

To solve (b) and (c) Using Bayes rule (4.3)

$$
\begin{aligned}
& Q_{11}=\frac{p_{1} P_{11}}{q_{1}}=\frac{0.5 \times 0.9}{0.55}=0.818 \\
& Q_{00}=\frac{p_{0} P_{00}}{q_{0}}=\frac{0.5 \times 0.8}{0.45}=0.889
\end{aligned}
$$

