Coding and Information Theory

$$
\begin{gathered}
\text { Chapter } 3 \\
\text { Entropy - A }
\end{gathered}
$$

Xuejun Liang

2022 Fall

Chapter 3: Entropy

3.1 Information and Entropy
3.2 Properties of the Entropy Function
3.3 Entropy and Average Word-length
3.4 Shannon-Fane Coding
3.5 Entropy of Extensions and Products
3.6 Shannon's First Theorem
3.7 An Example of Shannon's First Theorem

The aim of this chapter

- Introduce the entropy function
- which measures the amount of information emitted by a source
- Examine the basic properties of this function
- Show how it is related to the average word lengths of encodings of the source

3.1 Information and Entropy

- Define a number $I\left(s_{i}\right)$, for each $s_{i} \in S$, which represents
- How much information is gained by knowing that S has emitted s_{i}
- Our prior uncertainty as to whether s_{i} will be emitted and our surprise on learning that it has been emitted
- Therefore require that:

1) $I\left(s_{i}\right)$ is a decreasing function of the probability p_{i} of s_{i}, with $I\left(s_{i}\right)=0$ if $p_{i}=1$;
2) $I\left(s_{i} s_{j}\right)=I\left(s_{i}\right)+I\left(s_{j}\right)$, where S emits s_{i} and s_{j} consecutively and independently.

Entropy Function

- We define

$$
\begin{equation*}
I\left(s_{i}\right)=-\log p_{i}=\log \frac{1}{p_{i}} \tag{3.1}
\end{equation*}
$$

Figure 3.1
where $p_{i}=\operatorname{Pr}\left(s_{i}\right)$. So that I satisfies (1) and (2)

- Example 3.1
- Let S be an unbiased coin, with s_{1} and s_{2} representing heads and tails. Then $I\left(s_{1}\right)=$? and $I\left(s_{2}\right)=$?

The r-ary Entropy of S

- The average amount of information conveyed by S (per source-symbol) is given by the function

$$
H_{r}(\mathcal{S})=\sum_{i=1}^{q} p_{i} I_{r}\left(s_{i}\right)=\sum_{i=1}^{q} p_{i} \log _{r} \frac{1}{p_{i}}=-\sum_{i=1}^{q} p_{i} \log _{r} p_{i}
$$

- Called the r-ary entropy of S.
- Base r is often omitted

$$
H(\mathcal{S})=\sum_{i=1}^{q} p_{i} \log \frac{1}{p_{i}}=-\sum_{i=1}^{q} p_{i} \log p_{i}
$$

Figure 3.2

Example 3.2

- Let S have $q=2$ symbols, with probabilities p and 1-p
- Let $\bar{p}=1-p$. Then

$H(\mathcal{S})=-p \log p-\bar{p} \log \bar{p} . \quad H(p)=-p \log p-\bar{p} \log \bar{p}$.
- $H(p)$ is maximal when $p=1 / 2$
- Compute $H_{2}(p)$ when $p=1 / 2$ and $p=2 / 3$

Example 3.3

- If S has $q=5$ symbols with probabilities
- $p_{i}=0.3,0.2,0.2,0.2,0.1$, as in $\S 2.2$, Example 2.5,
- we find that $H_{2}(S)=2.246$.

Examples (Cont.)

- If S has q equiprobable symbols, then $p_{i}=1 / q$ for each i, so

$$
H_{r}(\mathcal{S})=q \cdot \frac{1}{q} \log _{r} q=\log _{r} q
$$

- Example 3.4 and 3.5
- Let $q=5, H_{2}(S)=\log _{2} 5 \approx 2.321$
- Let $q=6, H_{2}(S)=\log _{2} 6 \approx 2.586$
- Example 3.6.
- Using the known frequencies of the letters of the alphabet, the entropy of English text has been computed as approximately 4.03.

Compare average word-length of

 binary Huffman coding with entropy- As in Example 3.2 with $p=2 / 3$
- $H_{2}(S) \approx 0.918$
- $L\left(C^{1}\right) \approx 1, L\left(C^{2}\right) / 2 \approx 0.944, L\left(C^{3}\right) / 3 \approx 0.938$
- As in Example 3.3
- $H_{2}(S) \approx 2.246$
- $L\left(C^{1}\right) \approx 2.3$
- As in Example 3.4
- $H_{2}(S) \approx 2.321$
- $L\left(C^{1}\right) \approx 2.4$

3.2 Properties of the Entropy Function

- Theorem 3.7
- $H_{r}(S) \geq 0$, with equality if and only if $p_{i}=1$ for some i (so that $p_{j}=0$ for all $j \neq i$).

Lemma 3.8
For all $x>0$ we have $\ln x \leq x-1$, with equality if and only if $x=1$.

Converting to some other base r, we have $\log _{r}(x) \leq \log _{r}(e) \cdot(x-1)$ with equality if and only if $x=1$

Corollary 3.9
Let $x_{i} \geq 0$ and $y_{i}>0$ for $i=1, \ldots, \mathrm{q}$, and let $\sum_{i} x_{i}=\sum_{i} y_{i}=1$ (so $\left(x_{i}\right)$ and $\left(y_{i}\right)$ are probability distributions, with $\left.y_{i} \neq 0\right)$. Then

$$
\sum_{i=1}^{q} x_{i} \log _{r} \frac{1}{x_{i}} \leq \sum_{i=1}^{q} x_{i} \log _{r} \frac{1}{y_{i}}
$$

(that is, $\left.\sum_{i} x_{i} \log \left(y_{i} / x_{i}\right) \leq 0\right)$, with equality if and only if $x_{i}=y_{i}$ for all i.

Theorem 3.10

If a source S has q symbols then $H_{r}(S) \leq \log _{r} q$, with equality if and only if the symbols are equiprobable.

$$
\sum_{i=1}^{q} x_{i} \log _{r} \frac{1}{x_{i}} \leq \sum_{i=1}^{q} x_{i} \log _{r} \frac{1}{y_{i}},
$$

