Coding and Information Theory Chapter 3 Entropy - A

Xuejun Liang 2022 Fall

Chapter 3: Entropy

- 3.1 Information and Entropy
- 3.2 Properties of the Entropy Function
- 3.3 Entropy and Average Word-length
- 3.4 Shannon-Fane Coding
- 3.5 Entropy of Extensions and Products
- 3.6 Shannon's First Theorem
- 3.7 An Example of Shannon's First Theorem

The aim of this chapter

- Introduce the entropy function
 - which measures the amount of information emitted by a source
- Examine the basic properties of this function
- Show how it is related to the average word lengths of encodings of the source

3.1 Information and Entropy

- Define a number $I(s_i)$, for each $s_i \in S$, which represents
 - How much information is gained by knowing that S has emitted s_i
 - Our prior uncertainty as to whether s_i will be emitted and our surprise on learning that it has been emitted
- Therefore require that:
 - 1) $I(s_i)$ is a decreasing function of the probability p_i of s_i , with $I(s_i) = 0$ if $p_i = 1$;
 - 2) $I(s_i s_j) = I(s_i) + I(s_j)$, where S emits s_i and s_j consecutively and independently.

Entropy Function

We define

$$I(s_i) = -\log p_i = \log \frac{1}{p_i}$$
 (3.1)

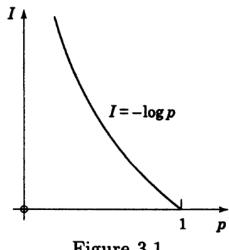


Figure 3.1

where $p_i = Pr(s_i)$. So that I satisfies (1) and (2)

- Example 3.1
 - Let S be an unbiased coin, with s_1 and s_2 representing heads and tails. Then $I(s_1) = ?$ and $I(s_2) = ?$

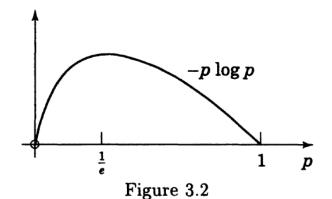
The *r*-ary Entropy of *S*

• The average amount of information conveyed by S (per source-symbol) is given by the function

$$H_r(S) = \sum_{i=1}^q p_i I_r(s_i) = \sum_{i=1}^q p_i \log_r \frac{1}{p_i} = -\sum_{i=1}^q p_i \log_r p_i$$

- Called the *r*-ary entropy of *S*.
- Base r is often omitted

$$H(S) = \sum_{i=1}^{q} p_i \log \frac{1}{p_i} = -\sum_{i=1}^{q} p_i \log p_i$$

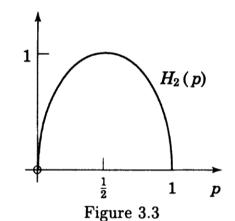


Example 3.2

- Let S have q = 2 symbols, with probabilities p and 1 p
- Let $\bar{p}=1-p$. Then

$$H(S) = -p \log p - \overline{p} \log \overline{p}$$
. $H(p) = -p \log p - \overline{p} \log \overline{p}$.

- H(p) is maximal when $p = \frac{1}{2}$
- Compute $H_2(p)$ when $p = \frac{1}{2}$ and $p = \frac{2}{3}$



Example 3.3

- If S has q = 5 symbols with probabilities
- p_i = 0.3, 0.2, 0.2, 0.2, 0.1, as in §2.2, Example 2.5,
- we find that $H_2(S) = 2.246$.

Examples (Cont.)

- If S has q equiprobable symbols, then $p_i={}^1\!/_q$ for each i, so $H_r(\mathcal{S})=q\cdot \frac{1}{q}\log_r q=\log_r q$.
- Example 3.4 and 3.5
 - Let q = 5, $H_2(S) = log_2 5 \approx 2.321$
 - Let q = 6, $H_2(S) = log_2 6 \approx 2.586$
- Example 3.6.
 - Using the known frequencies of the letters of the alphabet, the entropy of English text has been computed as approximately 4.03.

Compare average word-length of binary Huffman coding with entropy

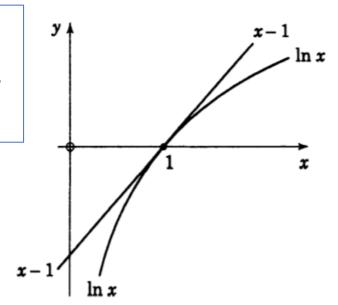
- As in Example 3.2 with $p = \frac{2}{3}$
 - $H_2(S) \approx 0.918$
 - $L(C^1) \approx 1$, $L(C^2)/2 \approx 0.944$, $L(C^3)/3 \approx 0.938$
- As in Example 3.3
 - $H_2(S) \approx 2.246$
 - $L(C^1) \approx 2.3$
- As in Example 3.4
 - $H_2(S) \approx 2.321$
 - $L(C^1) \approx 2.4$

3.2 Properties of the Entropy Function

- Theorem 3.7
 - $H_r(S) \ge 0$, with equality if and only if $p_i = 1$ for some i (so that $p_i = 0$ for all $j \ne i$).

Lemma 3.8

For all x > 0 we have $\ln x \le x - 1$, with equality if and only if x = 1.



Converting to some other base r, we have $log_r(x) \leq log_r(e) \cdot (x-1)$ with equality if and only if x=1

Corollary 3.9

Let $x_i \ge 0$ and $y_i > 0$ for i = 1, ..., q, and let $\sum_i x_i = \sum_i y_i = 1$ (so (x_i) and (y_i) are probability distributions, with $y_i \ne 0$). Then

$$\sum_{i=1}^q x_i \log_r \frac{1}{x_i} \le \sum_{i=1}^q x_i \log_r \frac{1}{y_i},$$

(that is, $\sum_{i} x_{i} \log(y_{i}/x_{i}) \leq 0$), with equality if and only if $x_{i} = y_{i}$ for all i.

Theorem 3.10

If a source S has q symbols then $H_r(S) \leq log_r q$, with equality if and only if the symbols are equiprobable.

$$\sum_{i=1}^q x_i \log_r \frac{1}{x_i} \leq \sum_{i=1}^q x_i \log_r \frac{1}{y_i},$$