Coding and Information Theory Overview Chapter 1: Source Coding - A

Xuejun Liang 2022 Fall

Overview

- Information Theory and Coding Theory are two related aspects of the problem of how to transmit information efficiently and accurately from a source, through a channel, to a receiver.
- Based on Mathematics areas:
 - Probability Theory and Algebra
 - Combinatorics and Algebraic Geometry

Important Problems

- How to compress information, in order to transmit it rapidly or store it economically
- How to detect and correct errors in information

Information Theory vs. Coding Theory

- Information Theory uses probability distributions to quantify information (through the entropy function), and to relate it to the average wordlengths of encodings of that information
 - In particular, Shannon's Fundamental Theorem Guarantees the existence of good error-correcting codes (ECCs)
- Coding Theory is to use mathematical techniques to construct ECCs, and to provide effective algorithms with which to use ECCs.

Chapter 1: Source Coding

- 1.1 Definitions and Examples
- 1.2 Uniquely Decodable Codes
- 1.3 Instantaneous Codes
- 1.4 Constructing Instantaneous Codes
- 1.5 Kraft's Inequality
- 1.6 McMillan's Inequality
- 1.7 Comments on Kraft's and McMillan's Inequalities

1.1 Definitions and Examples

- A sequence $s = X_1 X_2 X_3$... of symbols X_n , emitting comes from a source S
- The source alphabet of $S = \{s_1, s_2, \dots, s_q\}$
- Consider X_n as random variables and assume that
 - they are independent and
 - have the same probability distribution p_i .

$$\Pr\left(X_n = s_i\right) = p_i \quad \text{for } i = 1, \dots, q.$$

$$p_i \ge 0 \quad \text{and} \quad \sum_{i=1}^q p_i = 1$$

Examples

Example 1.1

- S is an unbiased die, $S = \{1, ..., 6\}$ with q = 6, X_n is the outcome of the n-th throw, and $p_i = 1/6$.

Example 1.2

- S is the weather at a particular place, with X_n representing the weather on day n, S = {good, moderate, bad}.

$$p_1 = 1/4, p_2 = 1/2, p_3 = 1/4.$$

Example 1.3

- S is a book, S consists of all the symbols used, X_n is the n-th symbol in the book, and p_i is the frequency of the i-th symbol in the source alphabet.

Code alphabet, symbol, word

- Code alphabet $T = \{t_1, \dots, t_r\}$ consisting of r codesymbols t_j .
 - Depends on the technology of the channel
 - Call r the radix (meaning "root" or "base")
 - Refer to the code as an r-ary code
 - When r = 2, binary code, $T = Z_2 = \{0, 1\}$
 - When r = 3, ternary code, $T = Z_3 = \{0, 1, 2\}$
- Code word: a sequence of symbols from T

Encode and Example

- To encode $s = X_1 X_2 X_3$..., we represent $X_n = s_i$ by
 - $-s_i \rightarrow w_i$ (its code word)
 - $-s \rightarrow t$ (one by one)
 - we do not separate the code-words in t
- Example 1.4
 - If S is an unbiased die, as in Example 1.1, take $T=Z_2$ and let w_i be the binary representation of the source-symbol s_i
 - $s_i = i \ (i = 1, ..., 6)$
 - $w_1 = 1, w_2 = 10, w_3 = 11, w_4 = 100, w_5 = 101, w_6 = 110$
 - $-s = 53214 \rightarrow t = 10111101100$
 - Could write t = 101.11.10.1.100 for clearer exposition

Define codes more precisely

- A word w in T is a finite sequence of symbols from T, its length |w| is the number of symbols.
- The set of all words in T is denoted by T^* , including empty word ε .
- The set of all non-empty words in T is denoted by T^+

$$T^* = \bigcup_{n \ge 0} T^n$$
 and $T^+ = \bigcup_{n > 0} T^n$,

where
$$T^n = T \times \cdots \times T$$

Define codes more precisely (Cont.)

• A source code (simply a code) C is a function $S \rightarrow T^+$ $w_i = C(s_i) \in T^+$, i = 1, 2, ..., q

- Regard C as a finite set of words $w_1, w_2, ..., w_q$ in T^+ .
- C can be extended to a function $S^* \to T^*$ $\mathbf{s} = s_{i_1} s_{i_2} \dots s_{i_n} \mapsto \mathbf{t} = w_{i_1} w_{i_2} \dots w_{i_n} \in T^*$
- The image of this function is the set $\mathcal{C}^* = \{w_{i_1}w_{i_2}\dots w_{i_n} \in T^* \mid \text{each } w_{i_i} \in \mathcal{C}, \ n \geq 0\}$
- The average word-length of C is $-where \ l_i = |w_i|$ $L(C) = \sum_{i=1}^q p_i l_i \ .$

Example 1.5

- Recall Example 1.4
 - Source symbols:

•
$$s_1 = 1$$
, $s_2 = 2$, $s_3 = 3$, $s_4 = 4$, $s_5 = 5$, $s_6 = 6$

Probability distribution

•
$$p_1 = \frac{1}{6}$$
, $p_2 = \frac{1}{6}$, $p_3 = \frac{1}{6}$, $p_4 = \frac{1}{6}$, $p_5 = \frac{1}{6}$, $p_6 = \frac{1}{6}$

– Code words:

•
$$w_1 = 1, w_2 = 10, w_3 = 11, w_4 = 100, w_5 = 101, w_6 = 110$$

Word lengths

•
$$l_1 = 1$$
, $l_2 = l_3 = 2$ and $l_4 = l_5 = l_6 = 3$

So, average word length

$$L(\mathcal{C}) = \frac{1}{6}(1+2+2+3+3+3) = \frac{7}{3}.$$

The aim is to construct codes C

- a) there is easy and unambiguous decoding $t \to s$,
- b) the average word-length L(C) is small.
- The rest of this chapter considers criterion (a), and the next chapter considers (b).

1.2 Uniquely Decodable Codes

- A code C is uniquely decodable (u.d. for short) if each $t \in T^*$ corresponds under C to at most one $s \in S^*$;
 - in other words, the function $C: S^* \rightarrow T^*$ is one-to-one,
- Will always assume that the code-words w_i in C are distinct.
 - Under this assumption, the definition of unique decodability of C is that whenever

$$u_1 \dots u_m = v_1 \dots v_n$$

with $u_1, \dots, u_m, v_1, \dots, v_n \in \mathcal{C}$, we have $m = n$ and $u_i = v_i$ for each i .

Example 1.6

- In Example 1.4, the binary coding of a die is not uniquely decodable.
- Give an example.
- Can you fix it?

Theorem 1.7

- If the code-words w_i in C all have the same length, then C is uniquely decodable.
 - If all the code-words in $\mathcal C$ have the same length l, we call $\mathcal C$ a block code of length l.

Example: Uniquely Decodable But Not Block Code

- Example 1.8
 - The binary code C given by

$$s_1 \mapsto w_1 = 0, \ s_2 \mapsto w_2 = 01, \ s_3 \mapsto w_3 = 011$$

- has variable lengths, but is still uniquely decodable.
- for example,

$$\mathbf{t} = 001011010011 = 0.01.011.01.0.011$$

$$\Rightarrow \quad \mathbf{s} = s_1 s_2 s_3 s_2 s_1 s_3.$$

Definition of C_n and C_{∞}

- We define
 - $-\mathcal{C}_0=\mathcal{C}$, and
 - $\mathcal{C}_n = \{ w \in T^+ \mid uw = v \text{ where } u \in \mathcal{C}, v \in \mathcal{C}_{n-1} \text{ or } u \in \mathcal{C}_{n-1}, v \in \mathcal{C} \}$ (1.3)
 - Note: $C_1 = \{ w \in T^+ \mid uw = v \text{ where } u, v \in C \}.$
- For each $n \ge 1$; we then define $c_{\infty} = \bigcup_{n=0}^{\infty} c_n$.

- Note: if
$$C_{n-1} = \emptyset$$
 then $C_n = \emptyset$,

$$C_{\infty} = \bigcup_{n=1}^{\infty} C_n. \tag{1.4}$$

Example 1.9: Compute C_n and C_∞

- Let $C = \{0, 01, 011\}$ as in Example 1.8. Then
- $C_1 = ?$ $C_2 = ?$ $C_n = ?$ for all $n \ge 2$ $C_\infty = ?$

Algorithm to compute Cn

- Notation
 - Let A = "12", B = "3xyz", and C = AB, Then C = "123xyz"
 - A is a prefix of C and B is a postfix of C
 - Notation C/A denotes B
- Algorithm to compute C1, C2, ..., Cn_1, Cn

```
C0 = C
```

For each code-word cw in C

For each code cw_1 in Cn_1

If cw_1 is prefix of cw, then add cw/cw_1 in Cn If cw is prefix of cw_1, then add cw_1/cw in Cn

The Sardinas-Patterson Theorem

- Theorem 1.10 (The Sardinas-Patterson Theorem)
 - A code C (finite) is uniquely decodable if and only if the sets C and C_{∞} are disjoint. ($C \cap C_{\infty} = \emptyset$)
 - A code C (finite or infinite) is uniquely decodable if and only if $C \cap C_{\infty} = \emptyset$ and $C_n = \emptyset$ for some $n \ge 1$.
- Example 1.11
 - If $C = \{0, 01, 011\}$ as in Examples 1.8 and 1.9,
 - Then $\mathcal{C}_{\infty} = \{1, 11\}$ which is disjoint from C.

Example 1.12

- Let *C* be the ternary code {01, 1, 2, 210}.
 - Then C_1 = {10}, C_2 = {0} and C_3 = {1}, so 1 ∈ C ∩ C_∞ and
 - thus C is not uniquely decodable.
- Can you find an example of non-unique decodability?