Coding and Information Theory

Mathematical Fundamentals (B)

Dr. Xuejun Liang

Quick Review of Last Lecture

- Modular Arithmetic
- Group and Examples
- Field

Field

- A set F is a Field
 - At least two elements $0, 1 \in F$
 - Two operations + and \times on F
 - Associative and commutative
 - Operation × distributes over +
 - 0 is the identity for + and 1 for \times
 - Additive inverse and multiplicative inverse

Order of Field: The number of elements in a field is known as the *order* of the field. A field having finite number of elements is called a *finite field*.

Property 1: For every element a in a field, $a \times 0 = 0 \times a = 0$.

Property 2: For any two nonzero elements a and b in a field, $a \times b \neq 0$.

Property 3: For $a \neq 0$, $a \times b = a \times c$ implies that b = c.

Finite Field Examples

$$(Z_7, +, \times, 0, 1)$$
 is a Field

Example:

Evaluate $((2-4) \times 4)/3$ in the field \mathbb{Z}_7

[+]	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

[•]	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

- $(Z_p, +, \times, 0, 1)$ is a Field (when p is a prime number.)
 - +, × are closed
 - +, × are associative and commutative
 - Operation × distributes over +
 - \bullet 0 is the identity for + and 1 for \times
 - Additive inverse and multiplicative inverse

Extension Field

Goal: Given a prime p and a positive integer n, construct a field with pⁿ elements.

Let
$$f(x)=2x^3+x^2+2$$
 and $g(x)=x^2+2 \in Z_3[x]$

$$f(x)+g(x) =$$

$$f(x)-g(x) =$$

$$f(x)g(x) =$$

$$f(x)/g(x) =$$

Definitions and Notations:

$$\begin{split} & Z_p[x]: \text{all polynomials in the indeterminate } x \text{ with coefficients in } Z_p. \\ & \text{deg}(f): \text{the degree of } f \ (f \in Z_p[x]) \text{ is the largest exponent in a term of } f. \\ & f \mid g: f \text{ divides } g \ (f, g \in Z_p[x]), \text{ if } g = f \cdot h \text{ for some } h \in Z_p[x]. \\ & g \equiv h \ (\text{mod } f \): f \mid (g - h) \ (f, g, h \in Z_p[x] \text{ and } \text{def}(f) \geq 1) \\ & Z_p[x]/(f): \text{all congruence classes modulo } f \text{ in } Z_p[x] \ (f \in Z_p[x]). \end{split}$$

 $Z_p[x]/(f)$ is equipped with +, × and $|Z_p[x]/(f)| = p^n$, where $n=\deg(f)$

Example: $Z_3[x]/(x^2-1)$

- (1) List all the elements in forms $a_0 + a_1x$, $a_0, a_1 \in \mathbb{Z}_3$.
- (2) List a complete multiplication table.

$$Z_3[x]/(x^2-1)$$

$$= \{0 + 0x, 0 + 1x, 0 + 2x, 1 + 0x, 1 + 1x, 1 + 2x, 2 + 0x, 2 + 1x, 2 + 2x\}$$

$$= \{0, 1, 2, x, 2x, 1 + x, 1 + 2x, 2 + x, 2 + 2x\}$$

	1	2	X	2 <i>x</i>	1+x	1+2x	2+ <i>x</i>	2+2 <i>x</i>
1	1	2	X	2 <i>x</i>	1+x	1+2x	2+ <i>x</i>	2+2 <i>x</i>
2	2							
X	X							
2 <i>x</i>	2 <i>x</i>							
1+x	1+x							
1+2 <i>x</i>	1+2 <i>x</i>							
2+ <i>x</i>	2+ <i>x</i>							
2+2 <i>x</i>	2+2 <i>x</i>							

Extension Fields (Cont.)

In general $Z_p[x]/(f)$ is a ring, not a field.

Definition: A polynomial f in $Z_p[x]$ is called irreducible, if f can not be written as $f = f_1 \cdot f_2$ where $deg(f_1) > 0$ and $deg(f_2) > 0$.

Fact: If f in $Z_p[x]$ is irreducible polynomial of degree n, then $Z_p[x]/(f)$ is a field with p^n elements.

Notation: $Z_p[x]/(f)$ is called Galois field and is denoted by $GF(p^n)$.

Example:
$$GF(2^3) = Z_2[x]/(x^3+x+1)$$

- (1) List all the elements in forms $a_0 + a_1x + a_2x^2$, $a_0, a_1, a_2 \in \mathbb{Z}_2$.
- (2) Compute $(x^2 + 1) \times (x^2 + x + 1)$.

$$Z_2[x]/(x^3+x+1)$$

$$= \{0 + 0x + 0x^2, 0 + 0x + 1x^2, 0 + 1x + 0x^2, 1 + 0x + 1x + 1x^2, 1 + 1x + 1x^2\}$$

=
$$\{0, 1, x, 1 + x, x^2, 1 + x^2, x + x^2, 1 + x + x^2\}$$

Linear (vector) space: Definition

A linear space V over a field F is a set whose elements are called vectors and where two operations, addition and scalar multiplication, are defined:

- **1.** addition, denoted by +, such that to every pair $x, y \in V$ there correspond a vector $x + y \in V$, and
 - x + y = y + x,
 - $x + (y + z) = (x + y) + z, x, y, z \in V$;

(V, +) is a group, with identity element denoted by 0 and inverse denoted by -, x + (-x) = x - x = 0.

- **2.** scalar multiplication of $x \in V$ by elements $k \in F$, denoted by $kx \in V$, and
 - k(ax) = (ka)x,
 - k(x + y) = kx + ky,
 - $(k + a)x = kx + ax, x, y \in V, k, a \in F.$

Moreover 1x = x for all $x \in V$, 1 being the unit in F.

Example: V_4 of all 4-tuples over Z_2 (GF(2)).

Subspace and Linearly independent

- Subspace: $S \subseteq V$
 - addition and scalar multiplication are closed in S
- Linear combination
 - $a_1v_1+a_2v_2+...+a_nv_n$
 - Linearly independent of v₁, v₂, ..., v_n
 - If $a_1v_1+a_2v_2+...+a_nv_n=0$ then $a_1=0$, $a_2=0$, ..., $a_n=0$.
 - Linearly dependent of v₁, v₂, ..., v_n
 - There are a_1 , a_2 , ..., a_n (not all 0's) such that $a_1v_1+a_2v_2+...+a_nv_n=0$