Coding and Information Theory

Mathematical Fundamentals (B)

Dr. Xuejun Liang

Quick Review of Last Lecture

- Modular Arithmetic
- Group and Examples
- Field

Field

- A set F is a Field
- At least two elements $0,1 \in F$
- Two operations + and \times on F
- Associative and commutative
- Operation \times distributes over +
- 0 is the identity for + and 1 for \times
- Additive inverse and multiplicative inverse

Order of Field: The number of elements in a field is known as the order of the field. A field having finite number of elements is called a finite field.

Property 1: For every element a in a field, $a \times 0=0 \times a=0$.
Property 2: For any two nonzero elements a and b in a field, $a \times b \neq 0$.
Property 3: For $a \neq 0, a \times b=a \times c$ implies that $b=c$.

Finite Field Examples

$$
\left(Z_{7},+, \times, 0,1\right) \text { is a Field }
$$

Example:
Evaluate $((2-4) \times 4) / 3$ in the field Z_{7}

$[+]$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
0	0	$\mathbf{1}$	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

$[\cdot]$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

- $\left(\mathrm{Z}_{\mathrm{p}},+, \times, 0,1\right)$ is a Field (when p is a prime number.)
,$-+ \times$ are closed
,$-+ \times$ are associative and commutative
- Operation \times distributes over +
- 0 is the identity for + and 1 for \times
- Additive inverse and multiplicative inverse

Extension Field

$$
\text { Let } f(x)=2 x^{3}+x^{2}+2 \text { and } g(x)=x^{2}+2 \in Z_{3}[x]
$$

$$
\begin{aligned}
& f(x)+g(x)= \\
& f(x)-g(x)= \\
& f(x) g(x)= \\
& f(x) / g(x)=
\end{aligned}
$$ a positive integer n , construct a field with p^{n} elements.

Definitions and Notations:

$\mathrm{Z}_{\mathrm{p}}[\mathrm{x}]$: all polynomials in the indeterminate x with coefficients in Z_{p}. $\operatorname{deg}(f)$: the degree of $f\left(f \in Z_{p}[x]\right)$ is the largest exponent in a term of f.
$\mathrm{f} \mid \mathrm{g}: \mathrm{f}$ divides $\mathrm{g}\left(\mathrm{f}, \mathrm{g} \in \mathrm{Z}_{\mathrm{p}}[\mathrm{x}]\right)$, if $\mathrm{g}=\mathrm{f} \cdot \mathrm{h}$ for some $\mathrm{h} \in \mathrm{Z}_{\mathrm{p}}[\mathrm{x}]$.
$\mathrm{g} \equiv \mathrm{h}(\bmod \mathrm{f}): \mathrm{f} \mid(\mathrm{g}-\mathrm{h})\left(\mathrm{f}, \mathrm{g}, \mathrm{h} \in \mathrm{Z}_{\mathrm{p}}[\mathrm{x}]\right.$ and $\left.\operatorname{def}(\mathrm{f}) \geq 1\right)$
$\mathrm{Z}_{\mathrm{p}}[\mathrm{x}] /(\mathrm{f})$: all congruence classes modulo f in $\mathrm{Z}_{\mathrm{p}}[\mathrm{x}]\left(\mathrm{f} \in \mathrm{Z}_{\mathrm{p}}[\mathrm{x}]\right)$.
$\mathrm{Z}_{\mathrm{p}}[\mathrm{x}] /(\mathrm{f})$ is equipped with,+ x and $\left|\mathrm{Z}_{\mathrm{p}}[\mathrm{x}] /(\mathrm{f})\right|=\mathrm{p}^{\mathrm{n}}$, where $\mathrm{n}=\operatorname{deg}(\mathrm{f})$

Example: $\mathrm{Z}_{3}[\mathrm{x}] /\left(\mathrm{x}^{2}-1\right)$
(1) List all the elements in forms $a_{0}+a_{1} x, a_{0}, a_{1} \in Z_{3}$.
(2) List a complete multiplication table.

$$
\begin{aligned}
& z_{3}[x] /\left(x^{2}-1\right) \\
& =\{0+0 x, 0+1 x, 0+2 x, 1+0 x, 1+1 x, 1+2 x, 2+0 x, 2+1 x, 2+2 x\} \\
& =\{0,1,2, x, 2 x, 1+x, 1+2 x, 2+x, 2+2 x\}
\end{aligned}
$$

	1	2	x	$2 x$	$1+x$	$1+2 x$	$2+x$	$2+2 x$
1	1	2	x	$2 x$	$1+x$	$1+2 x$	$2+x$	$2+2 x$
2	2							
x	x							
$2 x$	$2 x$							
$1+x$	$1+x$							
$1+2 x$	$1+2 x$							
$2+x$	$2+x$							
$2+2 x$	$2+2 x$							

Extension Fields (Cont.)

In general $\mathrm{Z}_{\mathrm{p}}[\mathrm{x}] /(\mathrm{f})$ is a ring, not a field.
Definition: A polynomial f in $Z_{p}[x]$ is called irreducible, if f can not be written as $\mathrm{f}=\mathrm{f}_{1} \cdot \mathrm{f}_{2}$ where $\operatorname{deg}\left(\mathrm{f}_{1}\right)>0$ and $\operatorname{deg}\left(\mathrm{f}_{2}\right)>0$.

Fact: If f in $\mathrm{Z}_{\mathrm{p}}[\mathrm{x}]$ is irreducible polynomial of degree n , then $\mathrm{Z}_{\mathrm{p}}[\mathrm{x}] /(\mathrm{f})$ is a field with p^{n} elements.

Notation: $\mathrm{Z}_{\mathrm{p}}[\mathrm{x}] /(\mathrm{f})$ is called Galois field and is denoted by $\mathrm{GF}\left(\mathrm{p}^{\mathrm{n}}\right)$.

Example: $\mathrm{GF}\left(2^{3}\right)=\mathrm{Z}_{2}[\mathrm{x}] /\left(\mathrm{x}^{3}+\mathrm{x}+1\right)$
(1) List all the elements in forms $a_{0}+a_{1} x+a_{2} x^{2}, a_{0}, a_{1}, a_{2} \in Z_{2}$.
(2) Compute $\left(x^{2}+1\right) \times\left(x^{2}+x+1\right)$.

$$
\begin{aligned}
& \mathrm{Z}_{2}[\mathrm{x}] /\left(\mathrm{x}^{3}+\mathrm{x}+1\right) \\
& =\left\{0+0 x+0 x^{2}, 0+0 x+1 x^{2}, 0+1 x+0 x^{2}, 1+0 x+1 x+1 x^{2}, 1+1 x+1 x^{2}\right\} \\
& =\left\{0,1, x, 1+x, x^{2}, 1+x^{2}, x+x^{2}, 1+x+x^{2}\right\}
\end{aligned}
$$

Linear (vector) space: Definition

A linear space V over a field F is a set whose elements are called vectors and where two operations, addition and scalar multiplication, are defined:

1. addition, denoted by + , such that to every pair $x, y \in V$ there correspond a vector $\mathrm{x}+\mathrm{y} \in \mathrm{V}$, and

- $x+y=y+x$,
- $x+(y+z)=(x+y)+z, x, y, z \in V$;
$(\mathrm{V},+$) is a group, with identity element denoted by 0 and inverse denoted by,$- x+(-x)=x-x=0$.

2. scalar multiplication of $x \in V$ by elements $k \in F$, denoted by $k x \in$ V, and

- $k(a x)=(k a) x$,
- $k(x+y)=k x+k y$,
- $(k+a) x=k x+a x, x, y \in V, k, a \in F$.

Moreover $1 \mathrm{x}=\mathrm{x}$ for all $\mathrm{x} \in \mathrm{V}, 1$ being the unit in F .

Example: V_{4} of all 4-tuples over $\mathrm{Z}_{2}(\mathrm{GF}(2))$.

Subspace and Linearly independent

- Subspace: $\mathrm{S} \subseteq \mathrm{V}$
- addition and scalar multiplication are closed in S
- Linear combination
- $a_{1} v_{1}+a_{2} v_{2}+\ldots+a_{n} v_{n}$
- Linearly independent of $v_{1}, v_{2}, \ldots, v_{n}$
- If $a_{1} v_{1}+a_{2} v_{2}+\ldots+a_{n} v_{n}=0$ then $a_{1}=0, a_{2}=0, \ldots, a_{n}=0$.
- Linearly dependent of $v_{1}, v_{2}, \ldots, v_{n}$
- There are $a_{1}, a_{2}, \ldots, a_{n}$ (not all 0 's) such that

$$
a_{1} v_{1}+a_{2} v_{2}+\ldots+a_{n} v_{n}=0
$$

