Coding and Information Theory

Chapter 7:
Linear Codes - B
Xuejun Liang
2022 Fall

Chapter 7: Linear Codes

1. Matrix Description of Linear Codes
2. Equivalence of Linear Codes
3. Minimum Distance of Linear Codes
4. The Hamming Codes
5. The Golay Codes
6. The Standard Array
7. Syndrome Decoding

Quick Review of Last Lecture (1)

- Matrix Description of Linear Codes
- Generator matrix G for C
- Encoding of Source (Given data, to compute codeword)
- Whether a Vector is a Code Word?
- A vector is a codeword if and only if it satisfies a set of simultaneous linear equations
- Parity-Check Matrix H for C
- Matrix of coefficients of the set of simultaneous linear equations
- A vector v is a codeword if and only if $v H^{T}=0$
- Three examples
- R_{n}, P_{n}, H_{7}

Quick Review of Last Lecture (2)

- Matrix Description of Linear Codes
- Linear code $C \subseteq V=F^{n}$ and let $\operatorname{dim}(C)=k$
- Generator matrix \boldsymbol{G} for C is $k \times n$
- Parity-Check Matrix H for C is $(n-k) \times n$
- Example H_{7}
- $n=7, k=4$

$$
\begin{aligned}
& v_{4}+v_{5}+v_{6}+v_{7}=0 \\
& v_{2}+v_{3}+v_{6}+v_{7}=0 \\
& v_{1}+v_{3}+v_{5}+v_{7}=0 .
\end{aligned}
$$

$G=\left(\begin{array}{lllllll}1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1\end{array}\right)$

$$
H=\left(\begin{array}{lllllll}
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right)
$$

Dual Code of C

- Parity-Check Matrix H for C can be viewed as the matrix of a linear transformation $h: V \rightarrow W=F^{n-k}$
- v$\mapsto h(\boldsymbol{v})=\boldsymbol{v} H^{T}$
- We have
- $C=\operatorname{ker}(h)=\{\boldsymbol{v}: h(\boldsymbol{v})=0\}$
- $\operatorname{im}(h)=\{h(v): v \in V\}$
- $\operatorname{dim}(V)=\operatorname{dim}(\operatorname{ker}(h))+\operatorname{dim}(\operatorname{im}(h))$
- H has rank $n-k$.
- So, n - k rows of H forms a basis of a linear space $D \subseteq V$ of dimension n - k. This linear code, with generator matrix H, called the dual code of C.

Orthogonal Code of C

- A scalar product on $V=F^{n}$ is defined as
- $u \cdot v=\left(u_{1} \ldots u_{n}\right) \cdot\left(v_{1} \ldots v_{n}\right)=u_{1} v_{1}+\cdots+u_{n} v_{n} \in F$
- \boldsymbol{u} and \mathbf{v} are orthogonal if $\boldsymbol{u} \cdot \boldsymbol{v}=0$
- We define the orthogonal code of C as below

$$
\mathcal{C}^{\perp}=\{\mathbf{w} \in \mathcal{V} \mid \mathbf{v} . \mathbf{w}=0 \text { for all } \mathbf{v} \in \mathcal{C}\}
$$

- Then, we have $\mathcal{D}=\mathcal{C}^{\perp}$, where D is dual code of C.
$u v^{T}=u \cdot v$

$$
\Longrightarrow v(a H)^{T}=v H^{T} a^{T}=0 a^{T}=0
$$

$C=\left\{v \mid v H^{T}=0\right\}$
$D=C^{\perp}$
$D=\left\{a H \mid a \in F^{n-k}\right\}$
$C=D^{\perp}$

- Example 7.14
- Let $q=2$, let $n=2 m$, and let C be the linear code with basis vectors $u_{i}=e_{2 i-1}+e_{2 i}$ for $i=1, \ldots, m$. we have $C=C^{\perp}$.
- Proof

For any i and j, we have

$$
\begin{aligned}
& u_{i} \cdot u_{j}=\left(e_{2 i-1}+e_{2 i}\right) \cdot\left(e_{2 j-1}+e_{2 j}\right) \\
& =e_{2 i-1} \cdot e_{2 j-1}+e_{2 i-1} \cdot e_{2 j}+e_{2 i} \cdot e_{2 j-1}+e_{2 i} \cdot e_{2 j}=0
\end{aligned}
$$

So, when j changes, we have $u_{i} \in C^{\perp}$
So, when i changes, we have $C \subseteq C^{\perp}$
Now, because $\operatorname{dim}(C)=\mathrm{m}$ and $2 \mathrm{~m}=\mathrm{n}=\operatorname{dim}(C)+\operatorname{dim}\left(C^{\perp}\right)$,
we have $\operatorname{dim}(C)=\operatorname{dim}\left(C^{\perp}\right)$
So, $C=C^{\perp}$

- Example 7.15
- The repetition code R_{n} is spanned by $1=1 \ldots 1$, so

$$
\mathcal{R}_{n}^{\perp}=\{\mathbf{w} \in \mathcal{V} \mid \mathbf{1} . \mathbf{w}=0\}=\left\{\mathbf{w} \in \mathcal{V} \mid w_{1}+\cdots+w_{n}=0\right\}=\mathcal{P}_{n}
$$

- Similarly, we have

$$
\begin{aligned}
\mathcal{P}_{n}^{\perp} & =\left\{\mathbf{w} \in \mathcal{V} \mid\left(\mathbf{e}_{i}-\mathbf{e}_{n}\right) \cdot \mathbf{w}=0 \text { for } i=1, \ldots, n-1\right\} \\
& =\left\{\mathbf{w} \in \mathcal{V} \mid w_{i}=w_{n} \text { for } i=1, \ldots, n-1\right\} \\
& =\mathcal{R}_{n} .
\end{aligned}
$$

$\left(\begin{array}{ccccc}1 & & & & -1 \\
& 1 & & & -1 \\
& & \ddots & & \vdots \\
& & & 1 & -1\end{array}\right)$

$\left(\begin{array}{llll}1 & 1 & \ldots & 1\end{array}\right)$ | A generator matrix for P_{n}
 and a parity-check matrix
 for R_{n} |
| :--- |
| A generator matrix for R_{n}
 and a parity-check matrix
 for P_{n} |

- Example 7.16
- The code H_{7}^{1} is a linear [7, 3]-code over F_{2}
- A generator matrix for H_{7}^{\perp} is the parity-check matrix H_{7}

$$
\left(\begin{array}{lllllll}
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right)
$$

- Taking linear combinations of the rows, we have H_{7}^{\perp} includes eight codewords:

| 0001111 | 0110011 | 1010101 | 0111100 |
| :--- | :--- | :--- | :--- | :--- |
| 1011010 | 1100110 | 1101010 | 0000000 |

- The minimal distance $\mathrm{d}=4$
- Lemma 7.17
- Let C be a linear $[n, k]$-code over F with generator matrix G, and let H be a matrix over F with n columns and $n-k$ rows. Then H is a parity-check matrix for C if and only if H has rank $n-k$ and satisfies $G H^{\top}=0$.
- Proof:
- The rows of H form $n-k$ vectors in V
- (1) $G H^{\top}=0$ if and only if
- These rows are orthogonal to those of G, i.e. $\in C^{\perp}$
- (2) H has rank $n-k$ if and only if
- These rows are linearly independent, or equivalently,
- These rows form a basis of C^{\perp}
- (1) + (2) if and only if
- H is a generator matrix for C^{\perp}, i.e., a parity-check matrix for C.

