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Chapter 7: Linear Codes

1. Matrix Description of Linear Codes

2. Equivalence of Linear Codes

3. Minimum Distance of Linear Codes

4. The Hamming Codes

5. The Golay Codes

6. The Standard Array

7. Syndrome Decoding



Quick Review of Last Lecture (1)

• Matrix Description of Linear Codes
• Generator matrix 𝑮 for 𝐶

• Encoding of Source (Given data, to compute codeword)

• Whether a Vector is a Code Word?
• A vector is a codeword if and only if it satisfies a set of 

simultaneous linear equations

• Parity-Check Matrix 𝐻 for 𝐶
• Matrix of coefficients of the set of simultaneous linear 

equations

• A vector 𝑣 is a codeword if and only if 𝑣𝐻𝑇 = 0

• Three examples
• 𝑅𝑛, 𝑃𝑛, 𝐻7



Quick Review of Last Lecture (2)

• Matrix Description of Linear Codes
• Linear code 𝐶⊆𝑉= 𝐹𝑛 and let dim(𝐶) = 𝑘

• Generator matrix 𝑮 for 𝐶 is 𝑘 × 𝑛

• Parity-Check Matrix 𝐻 for 𝐶 is (𝑛 − 𝑘) × 𝑛

• Example 𝐻7

• 𝑛 = 7, 𝑘 = 4

• 𝑛 − 𝑘 = 3



Dual Code of 𝐶

• Parity-Check Matrix 𝐻 for 𝐶 can be viewed as the matrix of a 
linear transformation ℎ: 𝑉 → 𝑊 = 𝐹𝑛−𝑘

• 𝒗 ↦ ℎ 𝒗 = 𝒗𝐻𝑇

• We have

• 𝐶 = ker ℎ = {𝒗: ℎ 𝒗 = 0}

• 𝑖𝑚 ℎ = {ℎ 𝒗 : 𝑣 ∈ 𝑉}

• dim 𝑉 = dim(ker ℎ ) + dim(𝑖𝑚 ℎ )

• 𝐻 has rank 𝑛−𝑘.

• So, 𝑛-𝑘 rows of 𝐻 forms a basis of a linear space 𝐷 ⊆ 𝑉 of 
dimension 𝑛-𝑘. This linear code, with generator matrix 𝐻, 
called the dual code of 𝐶.



Orthogonal Code of 𝐶

• A scalar product on 𝑉 = 𝐹𝑛 is defined as
• 𝑢 ∙ 𝑣 = 𝑢1. . . 𝑢𝑛 ∙ 𝑣1…𝑣𝑛 = 𝑢1𝑣1 +⋯+ 𝑢𝑛𝑣𝑛 ∈ 𝐹

• u and v are orthogonal if u∙v = 0

• We define the orthogonal code of 𝐶 as below

• Then, we have             , where 𝐷 is dual code of 𝐶.

𝑢𝑣𝑇 = 𝑢 ∙ 𝑣

𝐶 = 𝑣 𝑣𝐻𝑇 = 0}

𝐷 = 𝑎𝐻 𝑎 ∈ 𝐹𝑛−𝑘}

𝑣(𝑎𝐻)𝑇= 𝑣𝐻𝑇𝑎𝑇 = 0𝑎𝑇 = 0

𝐷 = 𝐶⊥

𝐶 = 𝐷⊥



• Example 7.14
• Let 𝑞 = 2, let 𝑛 = 2𝑚, and let 𝐶 be the linear code with 

basis vectors 𝑢𝑖 = 𝑒2𝑖−1 + 𝑒2𝑖 for 𝑖 = 1, ..., 𝑚. we have 
𝐶 = 𝐶⊥. 

• Proof
For any 𝑖 and 𝑗, we have

𝑢𝑖 ∙ 𝑢𝑗 = (𝑒2𝑖−1 + 𝑒2𝑖) ∙ (𝑒2𝑗−1 + 𝑒2𝑗)
= 𝑒2𝑖−1 ∙ 𝑒2𝑗−1 +𝑒2𝑖−1 ∙ 𝑒2𝑗 + 𝑒2𝑖 ∙ 𝑒2𝑗−1 + 𝑒2𝑖 ∙ 𝑒2𝑗 = 0

So, when j changes, we have 𝑢𝑖 ∈ 𝐶⊥

So, when i changes, we have 𝐶 ⊆ 𝐶⊥

Now, because dim(𝐶) = m and 2m = n = dim(𝐶) + dim(𝐶⊥), 

we have dim(𝐶) = dim(𝐶⊥) 

So, 𝐶 = 𝐶⊥



• Example 7.15
• The repetition code Rn is spanned by 1 = 1 ... 1, so 

• Similarly, we have

A generator matrix for Pn

and a parity-check matrix 
for Rn

A generator matrix for Rn

and a parity-check matrix 
for Pn



• Example 7.16

• The code 𝐻7
⊥ is a linear [7, 3]-code over 𝐹2

• A generator matrix for 𝐻7
⊥ is the parity-check matrix 𝐻7

• Taking linear combinations of the rows, we have 𝐻7
⊥

includes eight codewords:

• The minimal distance d = 4

0 0 0 1 1 1 1 0 1 1 0 0 1 1 1 0 1 0 1 0 1 0 1 1 1 1 0 0

1 0 1 1 0 1 0 1 1 0 0 1 1 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0



• Lemma 7.17

• Let 𝐶 be a linear [𝑛, 𝑘]-code over 𝐹 with generator 
matrix 𝐺, and let 𝐻 be a matrix over 𝐹 with 𝑛 columns 
and 𝑛 - 𝑘 rows. Then 𝐻 is a parity-check matrix for 𝐶 if 
and only if 𝐻 has rank 𝑛 - 𝑘 and satisfies 𝐺𝐻T = 0.

• Proof:

• The rows of 𝐻 form 𝑛 - 𝑘 vectors in 𝑉

• (1) 𝐺𝐻T = 0 if and only if

• These rows are orthogonal to those of G, i.e. ∈ 𝐶⊥

• (2) 𝐻 has rank 𝑛 - 𝑘 if and only if
• These rows are linearly independent, or equivalently, 

• These rows form a basis of 𝐶⊥

• (1) + (2) if and only if

• 𝐻 is a generator matrix for 𝐶⊥, i.e., a parity-check matrix for 𝐶.


