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Quick Review of Last Lecture (1)

• The Binary Symmetric Channel
• The channel relationships for BSC

• Bayes' formula for BSC

• Examples

• System Entropies
• 𝐻 Α ,𝐻 Β ,𝐻 Α Β ,𝐻 Β Α , 𝑎𝑛𝑑 𝐻(Α, Β)



Quick Review of Last Lecture (2)

• System Entropies for BSC

H(p) is strictly convex function

𝐻 𝑝𝑃 + ҧ𝑝 ത𝑃 ≥ 𝑝𝐻 𝑃 + ҧ𝑝𝐻( ത𝑃)

𝐻 𝑝𝑃 + ҧ𝑝 ത𝑃 ≥ 𝑃𝐻 𝑝 + ത𝑃𝐻( ҧ𝑝)



For the BSC, we have

• the sender's uncertainty about the output is equal to the 
uncertainty as to whether symbols are transmitted correctly



• The equivocation for the BSC is



• The BSC satisfies

with equality if and only if 𝑃 = Τ1 2 or 𝑝 = 0, 1.

the uncertainty about Β generally 
decreases when Α is known

the uncertainty about Α generally 
decreases when Β is known

𝐻 𝑝𝑃 + ҧ𝑝 ത𝑃 ≥ 𝑝𝐻 𝑃 + ҧ𝑝𝐻( ത𝑃)



4.5 Extension of Shannon's First 
Theorem to Information Channels

• Extension of Shannon's First Theorem
• The greatest lower bound of the average word-lengths 

of uniquely decodable encodings of the input Α of a 
channel, given knowledge of its output Β, is equal to the 
equivocation 𝐻(Α|Β).

• Interpretation
• the receiver knows B but is uncertain about A; the extra 

information needed to be certain about A is the 
equivocation 𝐻 Α Β , and 

• this is equal to the least average word-length required to 
supply that extra information (by some other means, 
separate from Γ).



Extension of Shannon's First Theorem

• Theorem 4.8
• If the output Β of a channel is known, then by encoding 

An with n sufficiently large, one can find uniquely 
decodable encodings of the input Α with average word-
lengths arbitrarily close to the equivocation 𝐻(Α|Β).

𝐴𝑛 𝐵𝑛Γ𝑛

use Shannon-Fano coding of 
extensions 𝐴𝑛 of 𝐴

use the conditional 

probabilities Pr 𝑎𝑖 𝑏𝑗 for 𝐴



4.6 Mutual Information

• If Γ is a channel with input Α and output Β, then the entropy 
H(Α) of Α has three equivalent interpretations:

1. it is the uncertainty about A when B is unknown;

2. it is the information conveyed by A when B is unknown;

3. it is the average word-length needed to encode A when B is 
unknown.

• Similarly, the equivocation H(Α|Β) has three equivalent 
interpretations:

1. it is the uncertainty about A when B is known;

2. it is the information conveyed by A when B is known;

3. it is the average word-length needed to encode A when B is 
known.



Mutual Information (Cont.)

• The mutual information is defined as the difference 
between these two numbers:

• This also has three equivalent interpretations:
1. it is the amount of uncertainty about Α resolved by 

knowing Β;

2. it is the amount of information about Α conveyed by 
Β;

3. it is the average number of symbols, in the code-words 
for A, which refer to Β.

𝐼(Α, Β) represents how much information A and B have in common



Examples

• Example 4.9
• For a rather frivolous example, let Γ be a film company, 

A a book, and B the resulting film of the book. Then 
𝐼(Α, Β) represents how much the film tells you about 
the book.

• Example 4.10
• Let A be a lecture, Γ a student taking notes, and B the 

resulting set of lecture notes. Then 𝐼(Α, Β) measures 
how accurately the notes record the lecture.



Mutual Information (Cont.)
• Interchanging the roles of A and B, we can define

• We have



• Theorem 4.11
• For every channel Γ we have 𝐼(Α, Β) ≥ 0, with equality 

if and only if the input Α and the output Β are 
statistically independent.



• Corollary 4.12
• For every channel Γ we have

• in each case, there is equality if and only if the input A 
and the output B are statistically independent.



4.7 Mutual Information for the Binary
Symmetric Channel

• Let us take the channel Γ to be the BSC, we have

• So that

where



4.8 Channel Capacity

• The mutual information 𝐼(Α, Β) for a channel Γ
represents how much of the information in the 
input A is emerging in the output B. 
• This depends on both Γ and Α

• The capacity C of a channel Γ is defined to be the 
maximum value of the mutual information 𝐼(Α, Β), 
where Α ranges over all possible inputs for Γ.
• This depends on Γ alone, represents the maximum 

amount of information which the channel can transmit

C = max{𝐼 Α, Β ∶ 𝐴 𝑖𝑠 𝑖𝑛𝑝𝑢𝑡 𝑜𝑓 Γ }



Example 4.13

• We saw that the BSC has channel 
capacity C = 1 - H(P) attained when 
the input satisfies p = Τ1 2.

• Figure shows C as a function of P

• C is greatest when P is 0 or 1

• C is least when P = Τ1 2


