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Quick Review of Last Lecture
Theorem 3.11: If 𝐶 is any uniquely decodable 𝑟-ary code for a source 𝑆, 
then 𝐿(𝐶) ≥ 𝐻𝑟(𝑆).

Corollary 3.12: 𝐿 𝐶 = 𝐻𝑟(𝑆) if and only if 𝑙𝑜𝑔𝑟(𝑝𝑖) is an integer for 
each 𝑖 , that is, each 𝑝𝑖 = 𝑟𝑒𝑖 for some integer 𝑒𝑖 ≤ 0

Efficiency Redundancy ҧ𝜂 = 1 − 𝜂.

A Shannon-Fano code 𝐶 for 𝑆 has word lengths

Theorem 3.16: Every 𝑟-ary Shannon-Fano code 𝐶 for a source 𝑆 satisfies



• Example 3.18
• Let 𝑆 have 5 symbols, with probabilities 𝑝𝑖= 0.3, 0.2, 0.2, 

0.2, 0.1 as in Example 2.5
• Compute Shannon-Fano code word length 𝑙𝑖, 𝐿(𝐶), 𝜂.
• Compare with Huffman code.

Compute word length 𝑙𝑖 of Shannon-Fano Code

𝑙𝑔 Τ1 𝑝𝑖 = 𝑙𝑖 ➔ 𝑙𝑔 Τ1 𝑝𝑖 ≤ 𝑙𝑖 ➔ Τ1 𝑝𝑖 ≤ 2𝑙𝑖



• Example 3.18
• Let 𝑆 have 5 symbols, with probabilities 𝑝𝑖= 0.3, 0.2, 0.2, 

0.2, 0.1 as in Example 2.5
• Compute Shannon-Fano code word length 𝑙𝑖, 𝐿(𝐶), 𝜂.
• Compare with Huffman code.



• Example 3.19

• If 𝑝1 = 1 and 𝑝𝑖 = 0 for all 𝑖 > 1, then 𝐻𝑟 𝑆 = 0. An 𝑟-ary
optimal code 𝐷 for 𝑆 has average word-length 𝐿 𝐷 =
1, so here the upper bound 1 + 𝐻𝑟 𝑆 is attained.

Theorem 3.16: Every 𝑟-ary Shannon-Fano code 𝐶 for a source 𝑆 satisfies



3.5 Entropy of Extensions and Products

• Recall from §2.6 
• 𝑆𝑛 has 𝑞𝑛 symbols 𝑠𝑖1 …𝑠𝑖𝑛with probabilities 𝑝𝑖1 …𝑝𝑖𝑛 .

• Theorem 3.20
• If 𝑆 is any source then 𝐻𝑟(𝑆

𝑛) = 𝑛𝐻𝑟(𝑆).

• Lemma 3.21
• If 𝑆 and 𝑇 are independent sources then 𝐻𝑟 𝑆 × 𝑇 =
𝐻𝑟 𝑆 + 𝐻𝑟(𝑇)

• Corollary 3.22
• If 𝑆1, … , 𝑆𝑛 are independent sources then



• Lemma 3.21
• If 𝑆 and 𝑇 are independent sources then 𝐻𝑟 𝑆 × 𝑇 =
𝐻𝑟 𝑆 + 𝐻𝑟(𝑇)

Proof



3.6 Shannon's First Theorem

• Theorem 3.23
• By encoding 𝑆𝑛 with 𝑛 sufficiently large, one can find 

uniquely decodable 𝑟-ary encodings of a source 𝑆 with 
average word-lengths arbitrarily close to the entropy 
𝐻𝑟(𝑆).

• Recall that
• if a code for 𝑆𝑛 has average word-length 𝐿𝑛, then as an 

encoding of 𝑆 it has average word-length Τ𝐿𝑛 𝑛.

• Note that
• the encoding process of 𝑆𝑛 for a large 𝑛 are complicated 

and time-consuming. 
• the decoding process involves delays



Proof of Shannon's First Theorem

• Theorem 3.23
• By encoding 𝑆𝑛 with 𝑛 sufficiently large, one can find 

uniquely decodable 𝑟-ary encodings of a source 𝑆 with 
average word-lengths arbitrarily close to the entropy 
𝐻𝑟(𝑆).

Proof:

So



3.7 An Example of Shannon's First Theorem

Let 𝑆 be a source with two symbols 𝑠1, 𝑠2 of probabilities 
𝑝𝑖 = Τ2 3, Τ1 3, as in Example 3.2.

• In §3.1, we have

• In §2.6, using binary Huffman codes for 𝑆𝑛 with 𝑛 = 1, 2 
and 3, we have

• For larger 𝑛 it is simpler to use Shannon-Fano codes, 
rather than Huffman codes.

• Compute 𝐿𝑛 for 𝑆𝑛

• Verify Τ𝐿𝑛 𝑛 → 𝐻2(𝑆)

𝐿𝑛 = 𝑎𝑛 −
2𝑛

3
𝑎𝑛 = 𝑛𝑙𝑜𝑔23



Verify Τ𝐿𝑛 𝑛 → 𝐻2(𝑆)

𝐿𝑛 = 𝑎𝑛 −
2𝑛

3
𝑎𝑛 = 𝑛𝑙𝑜𝑔23

Τ𝐿𝑛 𝑛 → 𝐻2(𝑆)



Compute 𝐿𝑛 for 𝑆𝑛-- (1) 𝐿𝑛 = 𝑎𝑛 −
2𝑛

3

𝑎𝑛 = 𝑛𝑙𝑜𝑔23

𝑆 has two symbols 𝑠1, 𝑠2 of probabilities 𝑝𝑖 = Τ2 3, Τ1 3

𝑆𝑛 has 2𝑛 symbols, each consisting of a block of n symbols 𝑠1 or 𝑠2

Assume 𝑠 ∈ 𝑆𝑛 with k symbols 𝑠1 and (n-k) symbols 𝑠2

Then s has probability

The symbol s has a Shannon-Fano code-word of length



Compute 𝐿𝑛 for 𝑆𝑛 -- (2) 𝐿𝑛 = 𝑎𝑛 −
2𝑛

3

𝑎𝑛 = 𝑛𝑙𝑜𝑔23

For each k = 0, 1, ..., n, the number of such symbols s is 𝐶(𝑘, 𝑛)

Hence the average word-length (for encoding 𝑆𝑛) is

By the Binomial Theorem

X = 2



Compute 𝐿𝑛 for 𝑆𝑛 -- (3) 𝐿𝑛 = 𝑎𝑛 −
2𝑛

3

𝑎𝑛 = 𝑛𝑙𝑜𝑔23

Differentiating (3.10) and then multiplying by x, we have

X = 2

Substituting in (3.9), we have

By the Binomial Theorem

X = 2


