Coding and Information Theory Chapter 3 Entropy - B _{Xuejun Liang} 2022 Fall

Chapter 3: Entropy

- 3.1 Information and Entropy
- 3.2 Properties of the Entropy Function
- 3.3 Entropy and Average Word-length
- 3.4 Shannon-Fane Coding
- 3.5 Entropy of Extensions and Products
- 3.6 Shannon's First Theorem
- 3.7 An Example of Shannon's First Theorem

Quick Review of Last Lecture

$$H_r(\mathcal{S}) = \sum_{i=1}^q p_i I_r(s_i) = \sum_{i=1}^q p_i \log_r \frac{1}{p_i} = -\sum_{i=1}^q p_i \log_r p_i$$

$$H(p) = -p\log p - \overline{p}\log \overline{p}.$$

$$H_r(\mathcal{S}) = q \cdot \frac{1}{q} \log_r q = \log_r q$$
.

Theorem 3.7: $H_r(S) \ge 0$, with equality if and only if $p_i = 1$ for some *i* (so that $p_j = 0$ for all $j \ne i$).

Theorem 3.10: If a source *S* has *q* symbols then $H_r(S) \le log_r q$, with equality if and only if the symbols are equiprobable.

Corollary 3.9

3.3 Entropy and Average Word-length

- Theorem 3.11
 - If C is any uniquely decodable r-ary code for a source S, then $L(C) \ge H_r(S)$.
- The interpretation
 - Each symbol emitted by *S* carries $H_r(S)$ units of information, on average.
 - Each code-symbol conveys one unit of information, so on average each code-word of C must contain at least $H_r(S)$ code-symbols, that is, $L(C) \ge H_r(S)$.
 - In particular, sources emitting more information require longer code-words.

Proof of Theorem 3.11

$$H_r(S) = \sum_{i=1}^q p_i \log_r \left(\frac{1}{p_i}\right)$$

$$\leq \sum_{i=1}^q p_i \log_r \left(\frac{1}{y_i}\right)$$

$$= \sum_{i=1}^q p_i \log_r (r^{l_i} K)$$

$$= \sum_{i=1}^q p_i (l_i + \log_r K)$$

$$= \sum_{i=1}^q p_i l_i + \log_r K \sum_{i=1}^q p_i$$

$$= L(C) + \log_r K$$

$$\leq L(C)$$

$$\sum_{i=1}^q x_i \log_r \frac{1}{x_i} \leq \sum_{i=1}^q x_i \log_r \frac{1}{y_i},$$

Corollary 3.12

Given a source S with probabilities p_i , there is a uniquely decodable r-ary code C for S with $L(C) = H_r(S)$ if and only if $log_r(p_i)$ is an integer for each i, that is, each $p_i = r^{e_i}$ for some integer $e_i \leq 0$.

$$\begin{split} &= \sum_{i=1}^{q} p_i \log_r \left(\frac{1}{p_i}\right) \\ &\leq \sum_{i=1}^{q} p_i \log_r \left(\frac{1}{y_i}\right) \end{split}$$

$$= L(\mathcal{C}) + \log_r K$$
$$\leq L(\mathcal{C})$$

Corollary 3.12

Given a source S with probabilities p_i , there is a uniquely decodable r-ary code C for S with $L(C) = H_r(S)$ if and only if $log_r(p_i)$ is an integer for each i, that is, each $p_i = r^{e_i}$ for some integer $e_i \leq 0$.

Example 3.13

If S has q = 3 symbols s_i , with probabilities $p_i = 1/4$, 1/2, and 1/4 (see Examples 1.2 and 2.1).

 $H_2(S) =$

A binary Huffman code *C* for *S*:

L(C) =

- Example 3.14
 - Let S have q = 5 symbols, with probabilities $p_i = 0.3, 0.2, 0.2, 0.2, 0.1$, as in Example 2.5.
 - In Example 3.3, $H_2(S) = 2.246$, and
 - in Example 2.5, L(C) = 2.3, C binary Huffman code for S
 - By Theorem 2.8, every uniquely decodable binary code D for S satisfies $L(D) \ge 2.3 > H_2(S)$.
 - Thus no such uniquely decodable binary code D satisfies $L(D) = H_r(S)$
 - What is the reason?

- Example 3.15
 - Let S have 3 symbols s_i , with probabilities $p_i = \frac{1}{2}, \frac{1}{2}, 0$.

• Let S have 2 symbols s_i , with probabilities $p_i = \frac{1}{2}, \frac{1}{2}$.

Code Efficiency and Redundancy

• If C is an r-ary code for a source S, its efficiency is defined to be

$$\eta = \frac{H_r(\mathcal{S})}{L(\mathcal{C})}, \qquad (3.4)$$

- So $0 \le \eta \le 1$ for every uniquely decodable code C for S
- The redundancy of C is defined to be $\bar{\eta} = 1 \eta$.
 - Thus increasing redundancy reduces efficiency
- In Examples 3.13 and 3.14,
 - $\eta = 1$ and $\eta \approx 0.977$, respectively.

3.4 Shannon-Fano Coding

- Shannon-Fano codes
 - close to optimal, but easier to estimate their average word lengths.
- A Shannon-Fano code C for S has word lengths

 $l_i = \lceil \log_r(1/p_i) \rceil$, (3.5)

• So, we have

$$\log_r \frac{1}{p_i} \le l_i < 1 + \log_r \frac{1}{p_i}, \quad (3.6)$$
$$K = \sum_{i=1}^q r^{-l_i} \le \sum_{i=1}^q p_i = 1,$$

So Theorem 1.20 (Kraft's inequality) implies that there is an instantaneous r-ary code C for S with these word-lengths l_i

- Theorem 3.16
 - Every *r*-ary Shannon-Fano code *C* for a source *S* satisfies

 $H_r(\mathcal{S}) \leq L(\mathcal{C}) \leq 1 + H_r(\mathcal{S})$

$$\log_r \frac{1}{p_i} \le l_i < 1 + \log_r \frac{1}{p_i}$$
, (3.6)

- Corollary 3.17
 - Every optimal *r*-ary code *D* for a source *S* satisfies

 $H_r(\mathcal{S}) \leq L(\mathcal{D}) \leq 1 + H_r(\mathcal{S})$

- Example 3.18
 - Let S have 5 symbols, with probabilities p_i = 0.3, 0.2, 0.2, 0.2, 0.2, 0.1 as in Example 2.5
 - Compute Shannon-Fano code word length l_i , L(C), η .
 - Compare with Huffman code.

Compute word length l_i of Shannon-Fano Code

$$l_i = \lceil \log_2(1/p_i) \rceil = \min\{n \in \mathbf{Z} \mid 2^n \ge 1/p_i\}$$