Coding and Information Theory Chapter 2
Optimal Codes - B

## Xuejun Liang

## 2022 Fall

## Content of Chapter 2

2.1 Optimality
2.2 Binary Huffman Codes
2.3 Average Word-length of Huffman Codes
2.4 Optimality of Binary Huffman Codes
2.5 r-ary Huffman Codes
2.6 Extensions of Sources

### 2.2 Binary Huffman Codes

- Let $T=Z_{2}=\{0,1\}$, Given a source $S$, we renumber the source-symbols $s_{1}, \ldots, s_{q}$, so that

$$
p_{1} \geq p_{2} \geq \cdots \geq p_{q} .
$$

- Form a reduced source $S^{\prime}$ by combining the two least-likely symbols.
- Given any binary code $C^{\prime}$ for $S^{\prime}$, we can form a binary code $C$ for $S$ :


## Example 2.5

$$
\begin{aligned}
& \mathcal{S} \rightarrow \mathcal{S}^{\prime} \rightarrow \cdots \rightarrow \mathcal{S}^{(q-2)} \rightarrow \mathcal{S}^{(q-1)} \\
& \mathcal{C} \leftarrow \mathcal{C}^{\prime} \leftarrow \cdots \leftarrow \mathcal{C}^{(q-2)} \leftarrow \mathcal{C}^{(q-1)}
\end{aligned}
$$

- Let $S$ have $q=5$ symbols $s_{1}, \ldots, s_{5}$ with probabilities

$$
p_{i}=0.3,0.2,0.2,0.2,0.1
$$

Compute Huffman code and $L(C)$

| $s$ |  |  | 0.3 | 0.2 | 0.2 | 0.2 | 0. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C |  |  | 01 | 10 | 11 | 000 | 00 |
| $S^{\prime}$ |  | 0.3 | 0.3 | 0.2 | 0.2 |  |  |
| $C^{\prime}$ |  | 00 | 01 | 10 | 11 |  |  |
| $S^{\prime \prime}$ | . 4 | 0.3 | 0.3 |  |  |  |  |
| $C^{\prime \prime}$ | 1 | 00 | 01 |  |  |  |  |
| $S^{\prime \prime \prime}$ | 0.6 .4 |  |  |  |  |  |  |
| $C^{\prime \prime \prime}$ | 01 |  |  |  |  |  |  |
| $S^{\prime \prime \prime \prime} 1$. |  |  |  |  |  |  |  |
| $C^{\prime \prime \prime \prime \prime}$ ¢ |  |  |  |  |  |  |  |

## Example 2.6

$$
\begin{aligned}
& \mathcal{S} \rightarrow \mathcal{S}^{\prime} \rightarrow \cdots \rightarrow \mathcal{S}^{(q-2)} \rightarrow \mathcal{S}^{(q-1)} \\
& \mathcal{C} \leftarrow \mathcal{C}^{\prime} \leftarrow \cdots \leftarrow \mathcal{C}^{(q-2)} \leftarrow \mathcal{C}^{(q-1)}
\end{aligned}
$$

- Let $S$ have $q=5$ symbols $s_{1}, \ldots, s_{5}$ again, but now suppose that they are equiprobable, that is,

$$
p_{1}=\ldots=p_{5}=0.2
$$

Compute Huffman code and $L(C)$.

## How the probability distribution affects the average word-length of Huffman codes

- In general, the greater the variation among the probabilities $p_{i}$, the lower the average word-length of an optimal code.
- Note: entropy can be used to measure the amount of variation in a probability distribution.
- Will study later in next chapter.
2.3 Average Word-length of Huffman Codes

$$
\begin{align*}
L(\mathcal{C})-L\left(\mathcal{C}^{\prime}\right) & =p_{q-1}(l+1)+p_{q}(l+1)-\left(p_{q-1}+p_{q}\right) l \\
& =p_{q-1}+p_{q} \\
& =p^{\prime}, \tag{2.3}
\end{align*}
$$

- Note $p^{\prime}$ is the "new" probability created by reducing $S$ to $S^{\prime}$.
- If we iterate this, using the fact that $L\left(C^{(q-1)}\right)=|\varepsilon|=0$, we find that

$$
\begin{equation*}
L(C)=p^{\prime}+p^{\prime \prime}+\cdots+p^{(q-1)} \tag{2.4}
\end{equation*}
$$

- the sum of all the new probabilities $p^{\prime}, p^{\prime \prime}, \ldots, p^{(q-1)}$ created in reducing $S$ to $S^{(q-1)}$.


## Try Example 2.5 and Example 2.6

|  | $s$ |  |  |  | 0.3 | 0.2 | 0 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $S^{\prime}$ |  |  | 0.3 | 0.3 | 0.2 | 0 |  |
| 2.5 | $S^{\prime \prime}$ |  | 0.4 | 0.3 | 0.3 |  |  |  |
|  | $S^{\prime \prime \prime}$ | 0.6 | 0.4 |  |  |  |  |  |
|  | $S^{\prime \prime \prime \prime}$ |  |  |  |  |  |  |  |



### 2.4 Optimality of Binary Huffman Codes

- Definition
- Two binary words $w_{1}$ and $w_{2}$ to be siblings if they have the form $x 0, x 1$ (or vice versa) for some word $x \in T^{*}$.
- Lemma 2.7
- Every source $S$ has an optimal binary code $D$ in which two of the longest code-words are siblings.
- Proof: By Theorem 2.3, there is an optimal binary code for S

Let us choose such a code $D$ which has the minimal total word length $\sigma$ (D)
Choose a longest code-word win D
Assume $w=x 0$, then $x 1 \in D$. So, $D$ has two longest sibling code-words If $x 1 \notin D$. Let $D^{\prime}=(D-\{x 0\}) \cup\{x\}$.

Then $D^{\prime}$ is a prefix code and $\sigma\left(D^{\prime}\right)<\sigma(D)$. This is a contradiction!

Theorem 2.8: If $C$ is a binary Huffman code for a source $S$, then $C$ is an optimal code for $S$.

- Proof:

Lemma 2.4 shows that C is instantaneous. So, it is sufficient to show that $L(C)$ is minimal

We use induction on the number $q$ of source-symbols.
If $q=1$ then $C=\{\varepsilon\}$ with $L(C)=0$, so the result is trivially true.
Assume that $\mathrm{L}(\mathrm{C})$ is minimal for all sources with $\mathrm{q}-1$ symbols
Prove that $\mathrm{L}(\mathrm{C})$ is minimal for all sources with $q$ symbols

$$
\text { Let } S=\left\{s_{1}, s_{2}, \ldots, s_{q-2}, s_{q-1}, s_{q}\right\} \text { and } S^{\prime}=\left\{s_{1}, s_{2}, \ldots, s_{q-2}, s^{\prime}\right\}, s^{\prime}=s_{q-1} V s_{q}
$$

Now let D: $s_{i} \rightarrow x_{i}$ be the optimal binary code for S given by Lemma 2.7
D has a sibling pair of longest code-words: $x_{q-1}=x 0$ and $x_{q}=x 1$
Now form a code $\mathrm{D}^{\prime}$ for $\mathrm{S}^{\prime}: s_{i} \rightarrow x_{i}(\mathrm{i}<\mathrm{q}-1)$ and $\mathrm{s}^{\prime} \rightarrow \mathrm{x}$

$$
L(\mathcal{D})-L\left(\mathcal{D}^{\prime}\right)=p_{q-1}+p_{q}=L(\mathcal{C})-L\left(\mathcal{C}^{\prime}\right), \quad L\left(\mathcal{D}^{\prime}\right)-L\left(\mathcal{C}^{\prime}\right)=L(\mathcal{D})-L(\mathcal{C})
$$

Now $\mathrm{C}^{\prime}$ is a Huffman code for $\mathrm{S}^{\prime}$, a source with $\mathrm{q}-1$ symbols, so by the induction hypothesis $\mathrm{C}^{\prime}$ is optimal

## 2.5 r-ary Huffman Codes

- If we use an alphabet $T$ with $|T|=r>2$, then the construction of $r$-ary Huffman codes is similar to that in the binary case.
- Merge $r$ source symbols together at a time
- Note: may need to add some dummy symbols such that

$$
q \equiv 1 \bmod (r-1)
$$

## Example 2.9

Let $q=6$ and $r=3$. Since $r-1=2$ we need $\mathrm{q} \equiv 1 \bmod (2)$, so we adjoin an extra symbol $s_{7}$ to $S$, with $p_{7}=0$ The reduction process now gives ......

## Example 2.10

Let $q=6$ and $r=3$ and suppose that the symbols $s_{1}, \ldots, s_{6}$, of $S$ have probabilities $p_{i}=0.3,0.2,0.2,0.1,0.1,0.1$. After adjoining $s_{7}$ with $p_{7}=0$, we find that the reduction process is as follows:

### 2.6 Extensions of Sources

- Let $S$ be a source with
- $q$ symbols $s_{1}, \ldots, s_{q}$ of
- probabilities $p_{1}, \ldots, p_{q}$
- The n-th extension $S^{n}$ of $S$ is the source with
- $q^{n}$ symbols $s_{i_{1}} \ldots, s_{i_{n}}\left(s_{i_{j}} \in S\right)$
- probabilities $p_{i_{1}} \ldots, p_{i_{n}}$
- Note: The probabilities $p_{i_{i}} \ldots, p_{i_{n}}$ form a probability distribution by
- Expanding the left-hand side of the equation

$$
\left(p_{1}+\cdots+p_{q}\right)^{n}=1^{n}=1
$$

## Example 2.11

Let $S$ have source $S=\left\{s_{1}, s_{2}\right\}$ with $p_{1}=2 / 3, p_{2}=1 / 3$. Then $S^{2}$ has source alphabet $=\left\{s_{1} s_{1}, s_{1} s_{2}, s_{2} s_{1}, s_{2} s_{2}\right\}$ with probabilities $4 / 9,2 / 9,2 / 9,1 / 9$.

Example 2.12: $S$ is as in Example 2.11
A binary Huffman code $\mathrm{C}: s_{1} \mapsto 0, s_{2} \mapsto 1$
Average word-length $L(C)=1$
Construct a Huffman code $C^{2}$ for $S^{2}$
Average word-length $L\left(C^{2}\right)=$ ?
You will see $L\left(C^{2}\right) / 2<L(C)=1$

## Extensions of Sources: decoding

- Decode a pair (two consecutive symbols), rather than one symbol, at a time.
- Not quite instantaneous
- A bounded delay while waiting for pairs to be completed
- Can construct a Huffman code $C^{3}$ for $S^{3}$
- Can show $L\left(C^{3}\right) / 3<L\left(C^{2}\right) / 2$
- Continuing this principle, construct a Huffman code $C^{n}$ for $S^{n}$
- the average word-length $L\left(C^{n}\right) / n \rightarrow$ ? as $n \rightarrow \infty$

