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Key content in this chapter

• Will study linear codes in greater detail by applying 
elementary linear algebra and matrix theory

• including an even simpler method for calculating the 
minimum distance.

• Theoretical background required includes
• Topics such as linear independence, dimension, and row 

and column operations
• Linear space on a finite field



7.1 Matrix Description of Linear 
Codes
• Given a linear code and let dim( ) = . A 

generator matrix for is defined as a matrix, 
in which the row vectors are a basis of . 

• Example 7.1
• The repetition code over has a single basis vector 

u1 = 11 . . . 1, so it has a generator matrix = (11 … 1)

• Example 7.2
The parity-check code ௡ over has basis 
u1, …, un-1 where each ui = ei - en in terms 
of the standard basis vectors e1, ..., en of 

, so it has a generator matrix G 



Matrix Description of Linear Codes

• Example 7.3

• Given a linear code and let dim( ) = . 
Encoding of source is a linear isomorphism 

( ) given by the matrix 

• Thus encoding is multiplication by a fixed matrix

A basis u1 = 1110000, u2 = 1001100, 
u3 = 0101010, u4 = 1101001 for the 
binary Hamming code ଻ was given 
in Example 6.5. So this code has a 
generator matrix G. 



Matrix Description of Linear Codes

• Example 7.4
• The repetition code has = 1, so = 1 = . Each a = 

is encoded as = = .

• Example 7.5
• If = then , so = . Each a = al ... an-I

is encoded as u = a = al ... an-Ian, where an = -(al + ... 
+ an-1), so 

• Example 7.6
• If then = 7 and = 4, so A = . Each a = a1 ... 

a4 A is encoded as u = a . For example, a = 0110



Matrix Description of Linear Codes

• Recall: How to construct the code for a = 
• Let the code word u = u1u2u3u4u5u6u7

• Bits u3 = a1, u5 = a2, u6 = a3, and u7 = a4

• Bits u1, u2, u4 for checking, 
determined by
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Matrix Description of Linear Codes

• Given a linear code and let dim( ) = 
consists of all solutions of a set of -

simultaneous linear equations.
• Example 7.7

• The repetition code consists of the vectors 
satisfying , which can be 

regarded as a set of n - k = n - 1 simultaneous linear 
equations ( =1, .. . , n - 1).

• Example 7.8
• The parity-check code (which has - = 1) is the 

subspace of defined by the single linear equation 
.



Matrix Description of Linear Codes

• Example 7.9
• The Hamming code consists of the vectors 

satisfying

• These equations are called parity-check equations
• Their matrix of coefficients is called a parity-

check matrix for 



Matrix Description of Linear Codes

• Lemma 7.10
• Let be a linear code, contained in , with parity-check 

matrix , and let . Then if and only if 
where denotes the transpose of the matrix .

• Examples: Compute  parity-check matrix for 
• 7.11: The repetition code .
• 7.12: The parity-check code .
• 7.13: The Hamming code .



Matrix Description of Linear Codes

• can be viewed as the matrix of a linear 
transformation 

•

• We have
•
•
•
• has rank − .

• So, - rows of H forms a basis of a linear space 
of dimension - This linear code, with generator 
matrix , called the dual code of .



Matrix Description of Linear Codes

• A scalar product on is defined as
•

• u and v are orthogonal if u v = 0
• We have

• Example 7.14
• Let = 2, let = 2 , and let be the linear code with 

basis vectors for = 1, ..., . we have 
. 



Matrix Description of Linear Codes

• Example 7.15
• The repetition code Rn is spanned by 1 = 1 ... 1, so 

• and similarly, ௡
ୄ

௡

• Example 7.16
• The code ଻

ୄ is a linear [7, 3]-code over ଶ

• Lemma 7.17
• Let be a linear [ , ]-code over with generator matrix , 

and let be a matrix over with columns and - rows. 
Then is a parity-check matrix for if and only if has rank 

- and satisfies T = 0.



7.2 Equivalence of Linear Codes

• The elementary row operations of matrix consist of
• permuting rows,
• multiplying a row by a non-zero constant, and 
• replacing a row ௜ with ௜ ௝ where and .

• Two linear codes and are equivalent if they have 
generator matrices and which differ only by 
elementary row operations and permutations of columns.

• Elementary row operations on generator may change the 
basis for , but they do not change the subspace .

• Permutations of columns of may change , but the new 
code will differ from only in the order of symbols within 
code-words.



Equivalence of Linear Codes

• By systematically using elementary row operations and 
column permutations, one can convert any generator matrix 
into the form

• We then say that (or ) is in systematic form.
• In this case, each ଵ ௞

௞ is encoded as

• where ଵ ௞ are information digits and ௞ାଵ ௡ is 
a block of - check digits.



Equivalence of Linear Codes

• Example 7.18
• The generator matrices for the codes ௡ and ௡ are in 

systematic form.

• Example 7.19.
• The generator matrix for ଻, is not in systematic form.
• But, it can be transformed into systematic form.

• If we have a generator matrix in systematic 
form for a linear code , then we can find a parity-
check matrix for .

• This is the systematic form for a parity-check matrix



Equivalence of Linear Codes

• Example 7.20
• Parity-check matrix in systematic form for the code ௡

• Example 7.21
• Parity-check matrix in systematic form for the code ௡

• Example 7.22
• Parity-check matrix in systematic form for the code ଻

• Theorem 7.23 (the Singleton bound (Exercise 6.18) for linear 
codes)

• If is a linear code of length , dimension , and minimum 
distance , then



Equivalence of Linear Codes

• Example 7.24
• The Singleton bound is attained by , with = 1 and 

= n, and by , with = - 1 and = 2; 
• But, not by , with = 3 and 1 + - = 4, 

• Corollary 7.25
• A -error-correcting linear [ , ]-code requires at least 

2 check digits.

• Example 7.26
• The linear codes and both have = 1; the number 

of check digits is - = 2 or 3 respectively.



7.3 Minimum Distance of Linear Codes

• Theorem 7.27
• Let be a linear code of minimum distance , and let be a 

parity-check matrix for . Then is the minimum number of 
linearly dependent columns of .

• Meaning of linearly dependent of columns of 
• One column 𝒊 linearly dependent, then 𝒊

• Two columns 𝒊 and 𝒋 linearly dependent, then 𝒊 is multiple of 
𝒋 (or 𝒋 is multiple of 𝒊). 

• So, if and only if the columns of H are non-zero and none 
is a multiple of any other.

• Example 7.28
• The parity-check matrix = (1 1 … 1) for ௡ has its columns non-

zero and equal , so ௡ has minimum distance = 2.



Minimum Distance of Linear Codes

• Example 7.29 
• In the parity-check matrix for ௡, any set of - 1 columns 

are linearly independent, while ଵ ௡ . So = .

• Example 7.30
• Now, look at the parity-

check matrix for ଻

• Corollary 7.31
• There is a -error-correcting linear [ , ]-code over if and 

only if there is an matrix over , of rank - , 
with every set of 2 columns linearly independent.



7.4 The Hamming Codes

• For a 1-error-correcting binary linear code, put = 1 
and = 2 in the sphere-packing bound (Corollary 6.17), 
so the condition for a perfect code becomes

• Let = - (the number of check digits), then this 
condition is equivalent to

• So



The Hamming Codes

Construct codes with these parameters on 
• By Corollary 7.31, need to construct a x matrix 

over 2 , of rank , with every pair of columns linearly 
independent (non-zero and distinct).

• Columns of must consist of all 2c - 1 non-zero binary 
vectors of length , in some order. 

• This matrix has rank of . Use it as the parity-check 
matrix, we have a code with these parameters. This 
code is called the binary Hamming code of length 
= 2 – 1.



The Hamming Codes

• Example 7.32
• has the parity checking matrix
• is !!!

• Note: The rate of will approaches to 1.

• Nearest neighbor decoding with 
• The receiver computes , called the syndrome of 

. If = 0, the receiver decodes as , and if = 
(the -th column of H) then .



The Hamming Codes

• Example 7.33
• Let us use , with parity-check matrix

• Suppose that = 1101001 is sent, and = 1101101 is 
received, so the error-pattern is = .

• The syndrome is =100, which is the transpose 
of the fifth column of .

• This indicates an error in the fifth position, so changing 
this entry of we get = 1101001 = 



The Hamming Codes

• Using the parity checking matrix as below, then a non-
zero syndrome is the binary representation of the 
position where a single error , has appeared

1  2  3  4  5  6  7
• Example 7.34

• Verify this using example 7.33
• Note: need to perform a column permutation (1362547) to 

change between the two representations.



Construction of perfect 1-error-correcting 
linear codes for prime-powers q > 2
• We take the columns of to be

pairwise linearly independent vectors of length over .

• The resulting linear code has length , dimension = - , 
and minimum distance = 3, so = 1.

• As in the binary case, as , but PrE

• Example 7.35
• If = 3 and = 2, then = 4 and =2. Then a perfect 1-error-

correcting linear [4, 2]-code over F3 can be given by H. H = ?



7.5 The Golay Codes

• Skip this section



7.6 The Standard Array

• Suppose is a linear code. The standard array of is 
essentially a table in which the elements of are arranged 
into cosets of the subspace .

• Suppose that                                     is a linear code with 
elements. Assume .

• For = 1,2,3, ..., let the -th row consist of the elements of 
the coset of .

where ( ௜ ௜ାଵ
௡ି௞ and ௜ is not in 

the previous ( < ) rows.

• A horizontal line across the array, immediately under the 
last row to satisfy , where .



The Standard Array

• Example 7.39
• Let be the binary repetition 

code R4 of length n = 4, so = 2, 
= 1 and the code-words are 𝟏

= 0 = 0000 and 𝟐 = 1 = 1111
• There are ௡ି௞ cosets of 

in , each with two vectors
• So, standard array has 8 rows: 
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The Standard Array

• Lemma 7.40
a) If is in the -th column of the standard array (that is, 

for some ), then is a nearest code-word 
to .

b) If, in addition, is above the line in the standard array 
(that is, ),then is the unique nearest 
code-word to .

• Thus C is perfect if and only if the entire standard 
array is above the line

• The sphere ) of radius about is the part of the 
-th column above the line.



The Standard Array
• Decoding rule

• Suppose that a code-word is transmitted, and 
is received, where is the error-pattern.

• The receiver finds in the standard array, and 
decides that ( is header of a column)

• Note this rule gives correct decoding if and only if 
the error-pattern is a coset leader ( ). 

• Example 7.41
• Let . Suppose that = 1111 is sent, and the 

error-pattern is = 0100, And 
• How when = 0110?



7.7 Syndrome Decoding
• If is a parity-check matrix for a linear code then the 

syndrome of a vector is the vector

• Lemma 7.42
• Let be a linear code, with parity-check matrix , and let 

ᇱ have syndromes ᇱ. Then and ' lie in the same 
coset of if and only if ᇱ.

• This shows that
• A vector lies in the -th row of the standard array if and 

only if it has the same syndrome as 𝒊, that is, ்
𝒊

். 

• A syndrome table can be created with each row having a 
coset leader and its syndrome .



Syndrome Decoding

• Example 7.43 
• Let be the binary repetition code , 

with standard array as given in Example 
7.39, so the coset leaders are the 
words in its first column. 

• Apply the parity-check matrix given in 
Example 7.11.

• Compute syndrome for each . 



Syndrome Decoding

• The syndrome decoding proceeds as follows
• Given any received , compute its syndrome . 
• Find in the second column of the syndrome table, say 

, the -th entry. 
• If is the coset leader corresponding to in the table, 

Then decode as . I.e.

• Example 7.44
• As in Example 7.43. = 1101 is received. its syndrome 

= 001. This is in the syndrome table, so we 
decode as


