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Key content in this chapter

* Will study linear codes in greater detail by applying
elementary linear algebra and matrix theory

* including an even simpler method for calculating the
minimum distance.
* Theoretical background required includes

* Topics such as linear independence, dimension, and row
and column operations

* Linear space on a finite field



7.1 Matrix Description of Linear
Codes

* Given alinearcode C €V = F*and letdim(C) = k. A
generator matrix G for C is defined as a k X n matrix,
in which the row vectors are a basis of C.

* Example 7.1

* The repetition code R,, over F has a single basis vector
u,=11...1, soit has a generator matrix G = (11 ... 1)

* Example 7.2

u,, ..., U, Where each u,=e, - e, in terms
of the standard basis vectors e, ..., e, of
I/, so it has a generator matrix G

The parity-check code P, over F has basis 1 -1
1



Matrix Description of Linear Codes

 Example 7.3
A basis u; = 1110000, u, = 1001100, 1110000
u, = 0101010, u, = 1101001 for the 100110 0
binary Hamming code H, was given 101 01010
in Example 6.5. So this code has a 1101001

generator matrix G.

e Given a linearcode C €V = F™ and let dim(C) = k.
Encoding of source A = F¥ is a linear isomorphism A —
C (a € Aw-ue€CC)given by the matrix G

u=aG
* Thus encoding is multiplication by a fixed matrix



Matrix Description of Linear Codes

* Example 7.4

* The repetition code R,, hask=1,s0 A=F!=F.Eacha=
a€Aisencodedasu=aG=a..a € R,.

* Example 7.5
*IfC=B,thenk=n—1,s0 A=F""1 Eacha=a,..a_,
€ Aisencodedasu=aG =3, ...a,a, wherea_ =-(a +...
+a.,),s0);a;, =0

* Example 7.6
* If C = H,thenn=7andk=4,s0A=F;.Eacha=a, ...
a, €E Aisencoded asu=aG € H,. For example,a=0110



Matrix Description of Linear Codes

* Recall: How to construct the code fora=aja,asa,
* Let the code word u = u,u,uzu,ucuU,
* Bitsu;=a,, us=a,, u,=a;, andu, =a,
* Bits u,, u,, u, for checking, Uy + Us + ug +u; =0

determined by Uy + Uz +ug +u; =0
u; +uz +us+u;, =0

Uq a;+a; +ay 1 1 0 1
/uZ\ /al +az + a4\ /1 /O\ /1\ /1\

0 0 0

1 1 1

+ ay
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Matrix Description of Linear Codes

* Given alinear code C € V = F" and let dim(C) = k.
C consists of all solutions of asetofn -k
simultaneous linear equations.

* Example 7.7
* The repetition code R,, consists of the vectors v =
vy ...V, € V satisfying vy = --- = v,,, which can be

regarded as a set of n - k= n - 1 simultaneous linear
equationsv; — v, =0(i=1,...,n-1).

* Example 7.8

* The parity-check code P, (which hasn - k = 1) is the
subspace of V defined by the single linear equation
vy +--+v, =0.



Matrix Description of Linear Codes

* Example 7.9

* The Hamming code H- consists of the vectors v =
vy ..V, € V = F] satisfying

U4 +‘U5+’Uﬁ-|-1}7:0,
vo + V3 + vg + v7 = 0,

v1 +v3 + v + vy =0.

* These equations are called parity-check equations

* Their matrix H of coefficients is called a parity-
check matrix for C



Matrix Description of Linear Codes

e lemma 7.10

* Let C be alinear code, contained in V, with parity-check
matrix H, and let v € V. Then v € C ifand only if vHT =
0, where HT denotes the transpose of the matrix H.

 Examples: Compute parity-check matrix H for C
* 7.11: The repetition code R,,.

* 7.12: The parity-check code B,.
e 7.13: The Hamming code H-.



Matrix Description of Linear Codes

* H can be viewed as the matrix of a linear
transformation h: V - W = Fnk

« v h(v) =vHT
 We have
e C = Kker(h) = {v:h(v) = 0}
e im(h) = {h(v):v eV}
e dim(V) = dim(ker(h)) + dim(im(h))
 H has rank n-k.

 So, n-k rows of H forms a basis of a linear space D € V
of dimension n-k. This linear code, with generator
matrix H, called the dual code of C.



Matrix Description of Linear Codes

* A scalar product on V = F™ is defined as
cu-v=~Wy...uy) Wy..vy) =uvy +--+u,v, €EF

 y and v are orthogonal if u'v=0

 \We have
D=Ct={weV|vw=0 forall veC(C}

* Example 7.14
* Letg =2, letn=2m, and let C be the linear code with
basis vectors u; = e,;_q +e,; fori =1, ..., m. we have
— L
C=C-.



Matrix Description of Linear Codes

* Example 7.15
* The repetition code R, isspannedby1=1...1, so
Ri={weV|lw=0}={weV|w + - +w, =0} =P,

e and similarly, B, = R,

* Example 7.16

* The code H7l is a linear [7, 3]-code over F,

* lemma /.17

* Let C be alinear [n, k]-code over F with generator matrix G,
and let H be a matrix over F with n columns and n - k rows.
Then H is a parity-check matrix for C if and only if H has rank
n - k and satisfies GH' = 0.



7.2 Equivalence of Linear Codes

* The elementary row operations of matrix consist of
* permuting rows,
* multiplying a row by a non-zero constant, and
* replacing a row r; with r; + ar; where j # i and a # 0.

* Two linear codes C; and C, are equivalent if they have
generator matrices G; and G, which differ only by
elementary row operations and permutations of columns.

* Elementary row operations on generator G may change the
basis for C, but they do not change the subspace C.

* Permutations of columns of G may change C, but the new
code will differ from C only in the order of symbols within
code-words.



Equivalence of Linear Codes

* By systematically using elementary row operations and
column permutations, one can convert any generator matrix
into the form

1 * ¥ .0 #
1 * k... %

G=(I|P)= . p , (7.2)
1 *x = *

 We then say that G (or C) is in systematic form.
* In this case, each @ = a; ...ax € F* is encoded as
=86 = 61 oo O§0kyg + i3 Cn

* where a; ... a; are information digits and ay ;¢ ...a,, = aP is
a block of n - k check digits.



Equivalence of Linear Codes

* Example 7.18

* The generator matrices G for the codes R,, and P, are in
systematic form.

* Example 7.109.
* The generator matrix G for H-, is not in systematic form.
* But, it can be transformed into systematic form.

* If we have a generator matrix G = (I |P) in systematic
form for a linear code C, then we can find a parity-
check matrix for C.

H= (=P | Ii_s) (7.3)
* This is the systematic form for a parity-check matrix



Equivalence of Linear Codes

Example 7.20
* Parity-check matrix in systematic form for the code R,

Example 7.21
* Parity-check matrix in systematic form for the code P,

Example 7.22

* Parity-check matrix in systematic form for the code H
Theorem 7.23 (the Singleton bound (Exercise 6.18) for linear
codes)

* If C is a linear code of length n, dimension k, and minimum
distance d, then

d<1+n-k.



Equivalence of Linear Codes

* Example 7.24

* The Singleton bound is attained by R,,, with k =1 and d
=n,and by P, withk=n-1andd = 2;

* But, notby H,,withd=3and1+n-k=4,
e Corollary 7.25
* A t-error-correcting linear [n, k]-code requires at least
2t check digits.
* Example 7.26

* The linear codes R; and H, both have t = 1; the number
of check digits isn - kK = 2 or 3 respectively.



7.3 Minimum Distance of Linear Codes

e Theorem 7.27

* Let C be alinear code of minimum distance d, and let H be a
parity-check matrix for C. Then d is the minimum number of
linearly dependent columns of H.

* Meaning of linearly dependent of columns of H

* One column c; linearly dependent, thenc; = 0

* Two columns c¢; and ¢;j linearly dependent, then c; is multiple of
c; (or ¢j is multiple of ¢;).

* So, d = 3 if and only if the columns of H are non-zero and none
is @ multiple of any other.

* Example 7.28

* The parity-check matrix H = (1 1 ... 1) for P, has its columns non-
zero and equal , so P, has minimum distance d = 2.



Minimum Distance of Linear Codes

* Example 7.29

* In the parity-check matrix H for R,,, any set of n - 1 columns
are linearly independent, whilec; + -+ ¢,, = 0.So d =n.

e Corollary 7.31

* There is a t-error-correcting linear [n, k]-code over F if and
only if there is an (n — k) X n matrix H over F, of rankn - k,
with every set of 2t columns linearly independent.

* Example 7.30
* Now, look at the parity-
. (

0O 0 01 1 1
check matrix H for H, 01100 1
1 01 01 0

fd ek



7.4 The Hamming Codes

* For a 1-error-correcting binary linear code, putt =1
and g = 2 in the sphere-packing bound (Corollary 6.17),
so the condition for a perfect code becomes

Thk=1+(?)=l+n

* Let c =n - k (the number of check digits), then this
condition is equivalent to

n=2°_1. (7.4)

= 15 31
k= 0 1 4 11 26

=

I
—_—
-""\]



The Hamming Codes

Construct codes with these parameterson F, = {0,1}

e By Corollary 7.31, need to construct a ¢ x n matrix H
over I, , of rank ¢, with every pair of columns linearly
independent (non-zero and distinct).

e Columns of H must consist of all 2¢- 1 non-zero binary
vectors of length ¢, in some order.

* This matrix H has rank of c. Use it as the parity-check
matrix, we have a code C with these parameters. This
code is called the binary Hamming code H,, of length n
=2¢-1.



The Hamming Codes

* Example 7.32
* H; has the parity checking matrix H = (0 1 1)
. 1 0 1
o Hyis Ry !
* Note: The rate of H,, will approaches to 1.

k 20—-1-c¢
B= S

* Nearest neighbor decoding with H,,

* The receiver computes s = vH', called the syndrome of
v. If s =0, the receiver decodes vas A(v) = v, and if s =
¢;T (the i-th column of H) then A(v) = v — e;.




The Hamming Codes

* Example 7.33
* Let us use H-, with parity-check matrix
0 1 1 1100
H=|1 011 010
1 1 01 0 0 1

e Suppose that u =1101001 is sent, and v =1101101 is
received, so the error-patternis e = es.

* The syndrome is s = vHT =100, which is the transpose
cs! of the fifth column of H.

* This indicates an error in the fifth position, so changing
this entry of v we get A(v) = 1101001 = u



The Hamming Codes

e Using the parity checking matrix as below, then a non-
zero syndrome is the binary representation of the
position i where a single error e, has appeared

0001111
H:(O 1100 1 1)
1010101
1234567

* Example 7.34
 Verify this using example 7.33

* Note: need to perform a column permutation (1362547) to
change between the two representations.



Construction of perfect 1-error-correcting
linear codes for prime-powers q > 2

 We take the columns of H to be

e

1 =1+q+¢*+ - +q°}

mn =

pairwise linearly independent vectors of length ¢ over F;.

* The resulting linear code has length n, dimension k =n - c,
and minimum distanced = 3,so t = 1.

* Asinthe binary case, R > 1 as ¢ — oo, but Pr; » 0.

 Example 7.35

* Ifg=3andc=2,thenn=4and k =2. Then a perfect 1-error-
correcting linear [4, 2]-code over F; can be given by H. H="7



7.5 The Golay Codes

* Skip this section



/.6 The Standard Array

* Suppose C € V is alinear code. The standard array of C is
essentially a table in which the elements of I/ are arranged
into cosets of the subspace C.

* Suppose that C = {u;,u,,...,up}is alinear code with M =
q" elements. Assume u; = 0.

e Fori=1,2,3, ..., let the i-th row consist of the elements of
the coset of C.

v,—+C:{v1;+u1 (:Vi)._. Vi W vues Vi'i'llM}

n—k

where wt(v;) < wt(v;41),i = 1,...,q" " — 1 and v; is not in

the previous (< i) rows.

* A horizontal line across the array, immediately under the
last row to satisfy wt(v;) < t, wheret = |(d — 1)/2].



The Standard Array

* Example 7.39

* Let C be the binary repetition
code R, of lengthn=4,s0 q =2,
k =1 and the code-words are u4
=0=0000andu,; =1=1111

* There are g% = 8 cosets of C
in V', each with two vectors

* So, standard array has 8 rows:

vi+Cvy,+0C,...,vg+C
v, = has weight 0

v, to vs has weight 1
Ve, V7, Vg has weight 2

v +C
v, +C
vy +C
vy +C
vs + C
Ve + C
v, + C
vg + C

0000 1111
1000 0111
0100 1011
0010 1101
0001 1110
1100 0011
1010 0101
1001 0110



The Standard Array

e Lemma 7.40

a) Ifvisinthe j-th column of the standard array (that is,
v = v; + u; for some i), then u;is a nearest code-word
to v.

b) If, in addition, v is above the line in the standard array
(that is, wt(v;) < t),then y; is the unique nearest
code-word to v.

* Thus Cis perfect if and only if the entire standard
array is above the line

* The sphere S;(u;) of radius t about u; is the part of the
j-th column above the line.



The Standard Array

e Decoding rule

e Suppose that a code-word u € C is transmitted, and v =
u + e € Vis received, where e is the error-pattern.

* The receiver finds v = v; + u; in the standard array, and
decides that A(v) = u; (u; is header of a column)

* Note this rule gives correct decoding if and only if
the error-pattern is a coset leader (e = v;).

* Example 7.41

* Let C = R,. Suppose that u =1111is sent, and the
error-patternis e = 0100, v =? And u; =7

e How when e =0110°?



/.7 Syndrome Decoding

* If H is a parity-check matrix for a linear code C € V then the
syndrome of a vector v € V is the vector

s=vH! ¢ Fnk (7.8)

e Lemma 7.42

* Let C be alinear code, with parity-check matrix H, and let
v,v' € V have syndromes s, s’. Then v and v' lie in the same
coset of C ifand only if s = s’.

* This shows that
 Avector v € V lies in the i-th row of the standard array if and
only if it has the same syndrome as v;, thatis, vH! = v;HT.

* A syndrome table can be created with each row having a
coset leader v; and its syndrome s; (= v;HT).



Syndrome Decoding

* Example 7.43

* Let C be the binary repetition code R,,
with standard array as given in Example
7.39, so the coset leaders v; are the
words in its first column.

* Apply the parity-check matrix given in
Example 7.11.

1 -1 1 1
H = 1 -1 = 1 1
1 -1 L d

* Compute syndrome s; for each v;.

0000
1000
0100
0010
0001
1100
1010
1001

000
100
010
001
111
110
101
011



Syndrome Decoding

* The syndrome decoding proceeds as follows
* Given any received v, compute its syndrome s = vH'.

* Find s in the second column of the syndrome table, say
s = s;, the i-th entry.

* If v; is the coset leader corresponding to s; in the table,
Then decode vasu; = v — v;. l.e.

A(v) =u; =v —-v;, where vH' =s;
* Example 7.44

* Asin Example 7.43. v = 1101 is received. its syndrome
s = vH' = 001. This is s, in the syndrome table, so we
decode v as A(v) =v - v4 = 1101 — 0010 = 1111



