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The aim of this chapter

• Shannon’s Fundamental Theorem states that
• the capacity C of is the least upper bound for the rates 

at which one can transmit information accurately 
through .

• We will look at a simple example of how this 
accurate transmission might be achieved.



5.1 Decision Rules

• A decision rule, or a decoding function 
• ∗

• Meaning: receiver sees and decides ∗ was sent

Example 5.1
Let be the BSC, so that A = B = . If the receiver trusts 
this channel, then should be the identity function.

The average probability of correct decoding is

where                                                     and



Decision Rules (Cont.)

• The error probability (the average probability 
of incorrect decoding) is

• Ideal observer rule
• Minimizes , or equivalently, which maximizes 

• How to maximize 
• For each j, we choose = * to maximize the backward 

probability . Or
• For each j, we choose i = j* to maximize the joint 

probability .



Decision Rules (Cont.)

• Example 5.2
• is the BSC, compute the Ideal observer rule 

• A maximum likelihood rule
• For each j, we choose = * to maximize the forward 

probability .

• Among all the decision rules for a given channel, 
the maximum likelihood rule maximizes the integral 
of over all input distributions .



Examples
• Example 5.3

• Let us apply the maximum likelihood rule to the BSC, where 
and compute and . (input probabilities )

• Example 5.4
• For a specific illustration, let us return to Example 4.5, where 

P = 0.8 and = 0.9.
• Compare the maximum likelihood rule and the ideal observer 

rule

• Example 5.5
• Let be the binary erasure channel (BEC) in Example 4.2, 

with P > 0. Compute the maximum likelihood rule, and 
compute and . (input probabilities ) 



5.2 An Example of Improved 
Reliability
• Given an unreliable channel, how can we transmit 

information through it with greater reliability?
• Considering BSC with 1 > P > . 

• Compute the maximum likelihood rule 
• Compute the mutual information I(A, B), assuming 
• Compute the error-probability 

• Now, sending each input symbol = 0 or 1 three times 
in succession. So

• The input consists of two binary words 000 and 111.
• the output consists of eight binary words 000, 001, 010, 100, 

011, 101, 110, and 111.
• Transmission rate is 



An Example of Improved Reliability 
(Cont.)

• the forward probabilities for this new input and output

• the maximum likelihood rule, called majority decoding

• a new binary symmetric channel 

•
•



Generalized Idea 

• If is a channel with an input having an alphabet 
of symbols, then any subset can be 

used as a set of code-words which are transmitted 
through 

• For instance, the repetition code over A consists of 
all the words = of length such that .

• In this case, So the rate is .
• In general, . So the rate is .

• The transmission rate can be defined as



5.3 Hamming Distance

• Let and be words of 
length in some alphabet , so , . The 
Hamming distance d( , ) between and is 
defined to be the number of subscripts such that 

.
• Example 5.6

• Let = 01101 and = 01000 in . Then d( , ) = 2.

• Example 5.7
• We can regard the words in 
as the eight vertices of a cube.



Hamming Distance (Cont.)

• Lemma 5.8

• To transmit information through , we choose a 
code for some , and use the maximum 
likelihood decision rule.

• Decode each received word as the code-word most 
likely to have caused it. (Using forward probability .)



Hamming Distance (Cont.)

• For simplicity, assume that is the BSC, with P > , 
so A = B = and = 2. 

• The maximum likelihood decision rule means for any 
output , we decode as the code-word = ( ) 

which maximizes the forward probability Pr( I ). 
• Note: a code-word which maximizes Pr( I ) is one 

which minimizes d( , ).
If then 

• So, this is also called the nearest neighbor decoding



5.4 Statement of Shannon’s Theorem

• Informally
• Shannon’s Theorem says that if we use long enough 

code-words then we can send information through a 
channel as accurately as we require, at a rate 
arbitrarily close to the capacity of .

• Theorem 5.9
• Let be a binary symmetric channel with P > , so 

has capacity = 1 - H(P) > 0, and let . Then for 
all sufficiently large there is a code , of rate 
satisfying , such that nearest neighbor 
decoding gives error-probability .



Outline Proof of Shannon’s Theorem

• Let R < C, Randomly chose , .

• Rate of = 
• Sending , expect to receive such that d( , ) 
• Receiving , decode such that d( , ) 
• Using the nearest neighbor rule, if decoding is incorrect 

then there must be some ' in with d( ', ) d( , ).
• So

• The upper bound on in (5.4) is equal to



Outline Proof (Cont.)

• For any given and , |{ ' : d( ', ) = }| = 

• So, |{ ' : d( ', ) }| = 

• Therefore

• Exercise 5.7



Outline Proof (Cont.)

• Putting in Exercise 5.7, we have

• Thus (5.4) becomes

• Note: C = 1 - H(P) = 1 - H(Q). 

• Now R < C, so as , and hence 
also.



5.5 The Converse of Shannon's 
Theorem
• Informally

• The converse of Shannon’s Theorem says that one can 
not do better than what the Shannon’s Theorem says.

• The converse of Shannon’s Theorem
• If C' > C then it is not true that for every > 0 there is a 

sequence of codes , of lengths , and of rates R 
satisfying C' - R < C', such that as .

• The Fano bound 
• gives a lower bound on the error-probability. (See 

Theorem 5.10 on the next slide.) 



The Fano Bound
• Theorem 5.10 

• Let be a channel with input and output . Then the 
error-probability PrE corresponding to any decision rule 

for satisfies

where is the number of symbols in 

• Meaning of inequality (5.5)
• Given , the receiver decodes , which may 

or may not be the actual symbol transmitted.
• The left-hand side of (5.5) is the extra information the 

receiver needs (on average) in order to know 



The Fano Bound (Cont.)

• Meaning of inequality (5.5)
• This extra information can be divided into two parts:

a) Whether or not decoding is correct, that is, whether or 
not ∗ ;

b) If decoding is incorrect, then which ∗ out of   
-1 symbols was transmitted.

• The information in (a) has value 
• The information in (b) has value at most 

• Note: we have



Examples

• Example 5.11
• Let be the BSC , and as a rather extreme example of a 

code let us take = , so R = 1. 
• If 0 < P < 1 we have C = 1 - H(P) < 1, so R > C. 
• Using the identity function ( ) = as a decision rule, 

we see that decoding is correct if and only if there are 
no errors, so as .



Examples (Cont.)

• Example 5.12
• The Hamming codes of length of the form and 

rate R = ( - )/ , so R 1 as n . 
• If we use a BSC with 0 < P < 1, then C = 1 - H(P) < 1 and 

hence R > C for all sufficiently large .
• The nearest neighbor decoding is correct if and only if 

there is at most one error (shall see this in §7.4), so 
as .



5.6 Comments on Shannon's 
Theorem
• Theorem 5.13 (The general form of Shannon's 

Theorem)
• Let be an information channel with capacity C > 0, and 

let . For all sufficiently large there is a code 
of length , of rate satisfying , together 
with a decision rule which has error-probability PrE < .

• Comment 5.14
• In order to achieve values of R close to C and PrE close to 

0, one may have to use a very large value of n. 
• This means that code-words are very long, so encoding 

and decoding may become difficult and time-consuming.



Comments on Shannon's Theorem

• Comment 5.14
• Moreover, if n is large then the receiver experiences 

delays while waiting for complete codewords to come 
through; when a received word is decoded, there is a 
sudden burst of information, which may be difficult to 
handle.

• Comment 5.15
• Shannon's Theorem tells us that good codes exist, but 

neither the statement nor the proof give one much help 
in finding them. 



Comment 5.15 (Cont.)

• The proof shows that the "average" code is good, but 
there is no guarantee that any specific code is good: this 
has to be proved by examining that code in detail.

• One might choose a code at random, as in the proof of 
the Theorem, and there is a reasonable chance that it 
will be good. 

• However, random codes are very difficult to use: ideally, 
one wants a code to have plenty of structure, which can 
then be used to design effective algorithms for encoding 
and decoding. 

• We will see examples of this in Chapters 6 and 7, when 
we construct specific codes with good transmission rates 
or error-probabilities.


