Coding and Information Theory Chapter 5 Using an Unreliable Channel ^{Xuejun Liang} 2019 Fall

Chapter 5 Using an Unreliable Channel

- 1. Decision Rules
- 2. An Example of Improved Reliability
- 3. Hamming Distance
- 4. Statement and Outline Proof of Shannon's Theorem
- 5. The Converse of Shannon's Theorem
- 6. Comments on Shannon's Theorem

The aim of this chapter

- Shannon's Fundamental Theorem states that
 - the capacity C of Γ is the least upper bound for the rates at which one can transmit information accurately through Γ.
- We will look at a simple example of how this accurate transmission might be achieved.

5.1 Decision Rules

- A decision rule, or a decoding function $\Delta: B \rightarrow A$
 - $b_j \to \Delta(b_j) = a_{j^*}$
 - Meaning: receiver sees b_j and decides $a_i = a_{j^*}$ was sent

Example 5.1

Let Γ be the BSC, so that $A = B = Z_2$. If the receiver trusts this channel, then Δ should be the identity function.

The average probability Pr_C of correct decoding is

$$\begin{aligned} &\Pr_{\mathrm{C}} = \sum_{j} q_{j} Q_{j^{\star} j} = \sum_{j} R_{j^{\star} j} \end{aligned} \tag{5.1} \\ &\text{where } \Pr\left(a = a_{j^{\star}} \mid b = b_{j}\right) = Q_{j^{\star} j} \text{ and } R_{ij} = q_{j} Q_{ij} \end{aligned}$$

Decision Rules (Cont.)

• The error probability Pr_E (the average probability of incorrect decoding) is

$$\Pr_{\rm E} = 1 - \Pr_{\rm C} = 1 - \sum_{j} R_{j^*j} = \sum_{j} \sum_{i \neq j^*} R_{ij} \quad (5.2)$$

- Ideal observer rule
 - Minimizes Pr_E , or equivalently, which maximizes Pr_C
- How to maximize Pr_C
 - For each j, we choose $i = j^*$ to maximize the backward probability $Pr(a_i | b_j) = Q_{ij}$. Or
 - For each j, we choose i = j* to maximize the joint probability $R_{ij} = q_j Q_{ij}$.

Decision Rules (Cont.)

- Example 5.2
 - Γ is the BSC, compute the Ideal observer rule Δ .
- A maximum likelihood rule
 - For each j, we choose $i = j^*$ to maximize the forward probability $Pr(b_j | a_i) = P_{ij}$.
- Among all the decision rules for a given channel, the maximum likelihood rule maximizes the integral of Pr_c over all input distributions $p \in P$.

$$\int_{\mathbf{p}\in\mathcal{P}}\operatorname{Pr}_{\mathcal{C}}dp_{1}\ldots dp_{r}$$

Examples

- Example 5.3
 - Let us apply the maximum likelihood rule Δ to the BSC, where P > 1/2 and compute \Pr_C and \Pr_E . (input probabilities p, \bar{p})
- Example 5.4
 - For a specific illustration, let us return to Example 4.5, where
 P = 0.8 and p = 0.9.
 - Compare the maximum likelihood rule and the ideal observer rule
- Example 5.5
 - Let Γ be the binary erasure channel (BEC) in Example 4.2, with P > 0. Compute the maximum likelihood rule, and compute Pr_C and Pr_E . (input probabilities p, \bar{p})

5.2 An Example of Improved Reliability

- Given an unreliable channel, how can we transmit information through it with greater reliability?
 - Considering BSC with 1 > P > 1/2.
 - Compute the maximum likelihood rule
 - Compute the mutual information I(A, B), assuming p=1/2
 - Compute the error-probability Pr_E
 - Now, sending each input symbol a = 0 or 1 three times in succession. So
 - The input consists of two binary words 000 and 111.
 - the output consists of eight binary words 000, 001, 010, 100, 011, 101, 110, and 111.
 - Transmission rate is 1/3

An Example of Improved Reliability (Cont.)

- the forward probabilities for this new input and output $\begin{pmatrix} P^3 & P^2Q & P^2Q & P^2Q & PQ^2 & PQ^2 & PQ^2 & Q^3 \\ O^3 & PO^2 & PO^2 & PO^2 & P^2O & P^2O & P^2Q & P^3 \end{pmatrix}$
- the maximum likelihood rule, called majority decoding $\Delta: \begin{cases} 000, 001, 010, 100 \mapsto 000, \\ 011, 101, 110, 111 \mapsto 111. \end{cases}$ 000

• a new binary symmetric channel
$$\Gamma'$$

 $M' = \begin{pmatrix} P^3 + 3P^2Q & 3PQ^2 + Q^3 \\ 3PQ^2 + Q^3 & P^3 + 3P^2Q \end{pmatrix} \stackrel{0}{1} \longrightarrow \stackrel{000}{111} \longrightarrow \Gamma \longrightarrow \stackrel{100}{011} \longrightarrow \stackrel{0}{1}$
• $\Pr_C = P^3 + 3P^2Q$
• $\Pr_F = 3PQ^2 + Q^3 = Q^2(3 - 2Q) \approx 3Q^2$

$$r_E = 3PQ^2 + Q^3 = Q^2(3 - 2Q) \approx 3Q^2$$
 110
111

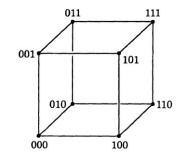
Generalized Idea

- If Γ is a channel with an input A having an alphabet A of r symbols, then any subset $C \subseteq A^n$ can be used as a set of code-words which are transmitted through Γ
 - For instance, the repetition code \mathbb{R}^n over A consists of all the words $w = aa \dots a$ of length n such that $a \in A$.
 - In this case, $|C| = r = r^1$. So the rate is 1/n.
 - In general, $|C| = r^k$. So the rate is k/n.
- The transmission rate can be defined as

$$R = \frac{\log_r |\mathcal{C}|}{n} \tag{5.3}$$

5.3 Hamming Distance

- Let $\boldsymbol{u} = u_1 \dots u_n$ and $\boldsymbol{v} = v_1 \dots v_n$ be words of length n in some alphabet A, so $\boldsymbol{u}, \boldsymbol{v} \in A^n$. The Hamming distance $d(\boldsymbol{u}, \boldsymbol{v})$ between \boldsymbol{u} and \boldsymbol{v} is defined to be the number of subscripts i such that $u_i \neq v_i$.
- Example 5.6
 - Let u = 01101 and v = 01000 in Z_2^5 . Then d(u, v) = 2.
- Example 5.7
 - We can regard the words in Z_2^3 as the eight vertices of a cube.



Hamming Distance (Cont.)

- Lemma 5.8
 - Let $\mathbf{u}, \mathbf{v}, \mathbf{w} \in A^n$. Then
 - (a) $d(\mathbf{u}, \mathbf{v}) \geq 0$, with equality if and only if $\mathbf{u} = \mathbf{v}$;
 - (b) $d(\mathbf{u}, \mathbf{v}) = d(\mathbf{v}, \mathbf{u});$
 - (c) $d(\mathbf{u}, \mathbf{w}) \leq d(\mathbf{u}, \mathbf{v}) + d(\mathbf{v}, \mathbf{w}).$
- To transmit information through Γ , we choose a code $C \subseteq A^n$ for some n, and use the maximum likelihood decision rule.
 - Decode each received word as the code-word most likely to have caused it. (Using forward probability P_{ij}.)

Hamming Distance (Cont.)

- For simplicity, assume that Γ is the BSC, with P > 1/2, so A = B = Z_2 and r = 2.
 - The **maximum likelihood** decision rule means for any output $v \in \mathbb{Z}_2^n$, we decode v as the code-word $u = \Delta(v) \in C$ which maximizes the forward probability $Pr(v \mid u)$.
 - Note: a code-word u which maximizes Pr(v | u) is one which minimizes d(u, v).

If d(u, v) = i then

$$\Pr(v|u) = Q^{i}P^{n-i} = P^{n}\left(\frac{Q}{P}\right)^{i}$$

• So, this is also called the **nearest neighbor decoding**

5.4 Statement of Shannon's Theorem

- Informally
 - Shannon's Theorem says that if we use long enough code-words then we can send information through a channel Γ as accurately as we require, at a rate arbitrarily close to the capacity C of Γ.
- Theorem 5.9
 - Let Γ be a binary symmetric channel with P > 1/2, so Γ has capacity C = 1 - H(P) > 0, and let δ , ε > 0. Then for all sufficiently large n there is a code $C \subseteq Z_2^n$, of rate Rsatisfying C - $\varepsilon \leq R <$ C, such that nearest neighbor decoding gives error-probability $\Pr_E < \delta$.

Outline Proof of Shannon's Theorem

- Let R < C, Randomly chose $C \subset \mathbb{Z}_2^n$, $|C| = 2^{nR}$.
- Rate of $C = \frac{\log_2 2^{nR}}{n} = R$
- Sending \boldsymbol{u} , expect to receive \boldsymbol{v} such that $d(\boldsymbol{u}, \boldsymbol{v}) \approx nQ$
- Receiving \boldsymbol{v} , decode $\Delta(\boldsymbol{v}) = \boldsymbol{u}$ such that $d(\boldsymbol{u}, \boldsymbol{v}) \approx nQ$
- Using the nearest neighbor rule, if decoding is incorrect then there must be some $u' \neq u$ in C with $d(u',v) \leq d(u,v)$.

• So
$$\operatorname{Pr}_{\mathrm{E}} \leq \sum_{\mathbf{u}' \neq \mathbf{u}} \operatorname{Pr}\left(d(\mathbf{u}', \mathbf{v}) \leq nQ\right),$$
 (5.4)

• The upper bound on Pr_E in (5.4) is equal to

$$(|\mathcal{C}| - 1) \operatorname{Pr} (d(\mathbf{u}', \mathbf{v}) \le nQ) < 2^{nR} \operatorname{Pr} (d(\mathbf{u}', \mathbf{v}) \le nQ).$$

- For any given \boldsymbol{v} and i, $|\{\boldsymbol{u}' \in \mathbb{Z}_2^n : d(\boldsymbol{u}', \boldsymbol{v}) = i\}| = \binom{n}{i}$
- So, $|\{u' \in Z_2^n : d(u', v) \le nQ\}| = \sum_{i \le n} \binom{n}{i}$
- Therefore $\Pr\left(d(\mathbf{u}',\mathbf{v}) \le nQ\right) \stackrel{\cdot}{=} \frac{1}{2^n} \sum_{i \le nQ} \binom{n}{i}$
- Exercise 5.7

Show that if $\lambda + \mu = 1$, where $0 \le \lambda \le \frac{1}{2}$, then

$$1 \ge \sum_{i \le \lambda n} \binom{n}{i} \lambda^i \mu^{n-i} \ge \sum_{i \le \lambda n} \binom{n}{i} \lambda^{\lambda n} \mu^{\mu n}$$

hence show that

$$\sum_{i\leq\lambda n} \binom{n}{i} \leq 2^{nH(\lambda)}.$$

- Putting $\lambda = Q$ in Exercise 5.7, we have $\sum_{i \leq nQ} \binom{n}{i} \leq 2^{nH(Q)}$
- Thus (5.4) becomes

$$\Pr_{\rm E} < 2^{nR} \cdot \frac{1}{2^n} \cdot 2^{nH(Q)} = 2^{n(R-1+H(Q))} = 2^{n(R-C)}$$

• Note: C = 1 - H(P) = 1 - H(Q).

• Now R < C, so $2^{n(R-C)} \rightarrow 0$ as $n \rightarrow \infty$, and hence $\Pr_E \rightarrow 0$ also.

5.5 The Converse of Shannon's Theorem

- Informally
 - The converse of Shannon's Theorem says that one can not do better than what the Shannon's Theorem says.
- The converse of Shannon's Theorem
 - If C' > C then it is not true that for every ε > 0 there is a sequence of codes C, of lengths $n \to \infty$, and of rates R satisfying C' $\varepsilon \leq R < C'$, such that $\Pr_E \to 0$ as $n \to \infty$.
- The Fano bound
 - gives a lower bound on the error-probability. (See Theorem 5.10 on the next slide.)

The Fano Bound

- Theorem 5.10
 - Let Γ be a channel with input A and output B. Then the error-probability Pr_{E} corresponding to any decision rule Δ for Γ satisfies

 $H(\mathcal{A} \mid \mathcal{B}) \le H(\Pr_{\mathrm{E}}) + \Pr_{\mathrm{E}} \log(r-1)$ (5.5) where *r* is the number of symbols in A

- Meaning of inequality (5.5)
 - Given b_j , the receiver decodes $a_{j*} = \Delta(b_j)$, which may or may not be the actual symbol a_i transmitted.
 - The left-hand side of (5.5) is the extra information the receiver needs (on average) in order to know a_i

The Fano Bound (Cont.)

- Meaning of inequality (5.5)
 - This extra information can be divided into two parts:
 - a) Whether or not decoding is correct, that is, whether or not $a_{j*} = a_i$;
 - b) If decoding is incorrect, then which $a_i (i \neq j^*)$ out of *r*-1 symbols was transmitted.
 - The information in (a) has value $H(Pr_E)$
 - The information in (b) has value at most $\Pr_E \log(r-1)$
- Note: we have

$$\Pr_{\mathcal{C}} = \sum_{j} R_{j^*j}$$
 and $\Pr_{\mathcal{E}} = \sum_{j} \sum_{i \neq j^*} R_{ij}$,

Examples

- Example 5.11
 - Let Γ be the BSC , and as a rather extreme example of a code let us take $C = A^n$, so R = 1.
 - If 0 < P < 1 we have C = 1 H(P) < 1, so R > C.
 - Using the identity function $\Delta(u) = u$ as a decision rule, we see that decoding is correct if and only if there are no errors, so $\Pr_E = 1 - P^n \rightarrow 1$ as $n \rightarrow \infty$.

Examples (Cont.)

- Example 5.12
 - The Hamming codes of length n of the form $2^c 1$ and rate R = (n c)/n, so $R \rightarrow 1$ as $n \rightarrow \infty$.
 - If we use a BSC with 0 < P < 1, then C = 1 H(P) < 1 and hence R > C for all sufficiently large n.
 - The nearest neighbor decoding is correct if and only if there is at most one error (shall see this in §7.4), so $\Pr_E = 1 - P^n - nP^{n-1}Q \rightarrow 1$ as $n \rightarrow \infty$.

5.6 Comments on Shannon's Theorem

- Theorem 5.13 (The general form of Shannon's Theorem)
 - Let Γ be an information channel with capacity C > 0, and let $\delta, \varepsilon > 0$. For all sufficiently large n there is a code Cof length n, of rate R satisfying C – $\varepsilon \leq R <$ C, together with a decision rule which has error-probability $\Pr_{E} < \delta$.
- Comment 5.14
 - In order to achieve values of R close to C and Pr_E close to 0, one may have to use a very large value of n.
 - This means that code-words are very long, so encoding and decoding may become difficult and time-consuming.

Comments on Shannon's Theorem

- Comment 5.14
 - Moreover, if n is large then the receiver experiences delays while waiting for complete codewords to come through; when a received word is decoded, there is a sudden burst of information, which may be difficult to handle.
- Comment 5.15
 - Shannon's Theorem tells us that good codes exist, but neither the statement nor the proof give one much help in finding them.

Comment 5.15 (Cont.)

- The proof shows that the "average" code is good, but there is no guarantee that any specific code is good: this has to be proved by examining that code in detail.
- One might choose a code at random, as in the proof of the Theorem, and there is a reasonable chance that it will be good.
- However, random codes are very difficult to use: ideally, one wants a code to have plenty of structure, which can then be used to design effective algorithms for encoding and decoding.
- We will see examples of this in Chapters 6 and 7, when we construct specific codes with good transmission rates or error-probabilities.