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Overview

• Information Theory and Coding Theory are 
two related aspects of the problem of how to 
transmit information efficiently and accurately 
from a source, through a channel, to a 
receiver.

• Based on Mathematics areas:
– Probability Theory and Algebra
– Combinatorics and Algebraic Geometry



Important Problems

• How to compress information, in order to 
transmit it rapidly or store it economically

• How to detect and correct errors in 
information



Information Theory vs. Coding Theory 

• Information Theory uses probability distributions 
to quantify information (through the entropy 
function) , and to relate it to the average word-
lengths of encodings of that information
– In particular, Shannon's Fundamental Theorem 

Guarantees the existence of good error-correcting 
codes (ECCs)

• Coding Theory is to use mathematical techniques 
to construct ECCs, and to provide effective 
algorithms with which to use ECCs.
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1.1 Definitions and Examples 

• A sequence = of symbols , emitting 
comes from a source 

• The source alphabet of 
• Consider as random variables and assume that

– they are independent and  
– have the same probability distribution .



Examples

• Example 1.1
– is an unbiased die, = {1, . . . , 6} with = 6, is the 

outcome of the -th throw, and = .
• Example 1.2

– is the weather at a particular place, with representing 
the weather on day , = {good, moderate, bad}. 

• Example 1.3
– is a book, consists of all the symbols used, is the -

th symbol in the book, and is the frequency of the -th
symbol in the source alphabet.



Code alphabet, symbol, word

• Code alphabet consisting of code-
symbols .
– Depends on the technology of the channel
– Call the radix (meaning "root“ or “base”)
– Refer to the code as an -ary code
– When = 2, binary code, = = {0, 1}
– When = 3, ternary code, = = {0, 1, 2} 

• Code word: a sequence of symbols from 



Encode and Example

• To encode = , we represent = by 
– 𝑖 𝑖 (its code word)
– (one by one)
– we do not separate the code-words in 

• Example 1.4
– If is an unbiased die, as in Example 1.1, take 2 and 

let 𝑖 be the binary representation of the source-symbol 𝑖

= ( = 1, . . . ,6)
– = 53214  =10111101100
– Could write = 101.11.10.1.100 for clearer exposition



Define codes more precisely

• A word in is a finite sequence of symbols from , 
its length is the number of symbols.

• The set of all words in is denoted by *, including 
empty word ɛ.

• The set of all non-empty words in is denoted by +



Define codes more precisely (Cont.)

• A source code (simply a code) is a function  +

• Regard as a finite set of words 1, 2, …, q in +.
• can be extended to a function *  *

• The image of this function is the set

• The average word-length of is
–



The aim is to construct codes 

a) there is easy and unambiguous decoding -> ,
b) the average word-length ( ) is small.

• The rest of this chapter considers criterion (a) , and 
the next chapter considers (b). 

• Example 1.5
– The code in Example 1.4 has 1 = 1, 2 = 3 = 2 and 4 = 5 = 

6 = 3, so



1.2 Uniquely Decodable Codes

• A code is uniquely decodable (u.d. for short) if each 
* corresponds under to at most one *; 

– in other words, the function : *  * is one-to-one, 

• Will always assume that the code-words i in are 
distinct. 
– Under this assumption, the definition of unique 

decodability of is that whenever 



Uniquely Decodable Codes (Cont.)

• Example 1.6
– In Example 1.4, the binary coding of a die is not uniquely 

decodable.
– Give an example.
– Can you fix it?

• Theorem 1.7
– If the code-words i in all have the same length, then 

is uniquely decodable.

• If all the code-words in have the same length , we 
call a block code of length .



Uniquely Decodable Codes (Cont.)

• Example 1.8
– The binary code given by

– has variable lengths, but is still uniquely decodable.
– for example, 
–

• We define
–

–

– Note:     



Uniquely Decodable Codes (Cont.)

• For each ≥ 1; we then define
– Note: 

• Example 1.9
– Let ={0, 01, 011} as in Example 1.8. Then
– ?               ?               ?                                          ?

• Theorem 1.10 (The Sardinas-Patterson Theorem)
– A code (finite) is uniquely decodable if and only if the 

sets and ∞ are disjoint.
– A code (finite or infinite) is uniquely decodable if and 

only if = and for some .



Uniquely Decodable Codes (Cont.)

• Example 1.11
– If = {0,01,011} as in Examples 1.8 and 1.9, then             {1, 

11} which is disjoint from C.
• Example 1.12

– Let be the ternary code {01, 1, 2, 210}. Then 1 = {10},
– 2 = {0} and 3 = {1}, so 1 ∞ and thus is not 

uniquely decodable.
– Can you find an example of non-unique decodability?

• Example 1.13
– Find an example where all finite code-sequences are 

decoded uniquely, but some infinite ones are not.



1.3 Instantaneous Codes

• Example 1.14
– Consider the binary code given by

– We have 
– Thus                        so is uniquely decodable
– Consider a finite message = 0111 . ...
– We can not decode until we know how many 1’s.
– We say that is not instantaneous.



Instantaneous Codes (cont.)

• Example 1.16
– Consider the binary code given by

– the reverse of the code in Example 1.14
– this is uniquely decodable
– It is also instantaneous

• Formal definition
– A code is instantaneous if, for each sequence of code-

words , . . . , every code-sequence beginning = 
, . . . … is decoded uniquely as … …, 

no matter what the subsequent symbols in are.



Prefix Code

• A code is a prefix code if no code-word is a 
prefix (initial segment) of any code-word 

equivalently, for any , 

• that is, in the notation 
• Theorem 1.17

– A code is instantaneous if and only if it is a prefix code.



1.4 Constructing Instantaneous Codes

•

• ,..



Constructing Instantaneous Codes 
(Cont.)

• A code can be regarded as a finite set of vertices of 
the tree . 

• A word is a prefix of if and only if the vertex 
is dominated by the vertex 
– that is, there is an upward path in from to 

• is instantaneous if and only if no vertex is 
dominated by a vertex .



Examples

• Example 1.18
– Let us find an instantaneous binary code for a source 

with five symbols .

• Example 1.19
– Is there an instantaneous binary code for this source 

with word-lengths 1, 2, 3, 3, 4?
– No, Why?
– Is there an instantaneous ternary code for this source 

with word-lengths 1, 2, 3, 3, 4?
– Yes. Why? 



1.5 Kraft’s Inequality

• Theorem 1.20
– There is an instantaneous -ary code with word-lengths 

, if and only if

– Proof
•

•

(1.5)



1.6 McMillan's Inequality

• Theorem 1.21
– There is a uniquely decodable -ary code with word-

lengths , if and only if

• Corollary 1.22
– There is an instantaneous -ary code with word-lengths 

, if and only if there is a uniquely decodable -ary
code with these word-lengths .

(1.6)



1.7 Comments on Kraft's and 
McMillan’s Inequalities

• Comment 1.23
– Theorems 1.20 and 1.21 do not say that an -ary code with 

word-lengths is instantaneous or uniquely 
decodable if and only if 

–

•
–

–



Comments (Cont.)

• Comment 1.25
– If an -ary code is uniquely decodable, then it need not 

be instantaneous, but by Corollary 1.22 there must be an 
instantaneous -ary code with the same word-lengths.

–

• Comment 1.26
– The summand in corresponds to the rather 

imprecise notion of the "proportion" of the tree above 
a vertex of height .


