Coding and Information Theory Overview Chapter 1: Source Coding Xuejun Liang 2019 Fall

Overview

- Information Theory and Coding Theory are two related aspects of the problem of how to transmit information efficiently and accurately from a source, through a channel, to a receiver.
- Based on Mathematics areas:
 - Probability Theory and Algebra
 - Combinatorics and Algebraic Geometry

Important Problems

- How to compress information, in order to transmit it rapidly or store it economically
- How to detect and correct errors in information

Information Theory vs. Coding Theory

- Information Theory uses probability distributions to quantify information (through the entropy function), and to relate it to the average wordlengths of encodings of that information
 - In particular, Shannon's Fundamental Theorem Guarantees the existence of good error-correcting codes (ECCs)
- Coding Theory is to use mathematical techniques to construct ECCs, and to provide effective algorithms with which to use ECCs.

Chapter 1: Source Coding

- 1.1 Definitions and Examples
- 1.2 Uniquely Decodable Codes
- 1.3 Instantaneous Codes
- 1.4 Constructing Instantaneous Codes
- 1.5 Kraft's Inequality
- 1.6 McMillan's Inequality
- 1.7 Comments on Kraft's and McMillan's Inequalities

1.1 Definitions and Examples

- A sequence s = X₁X₂X₃ ... of symbols X_n, emitting comes from a source S
- The source alphabet of $S = \{s_1, s_2, \dots, s_q\}$
- Consider X_n as random variables and assume that
 - they are independent and
 - have the same probability distribution p_i .

$$\Pr(X_n = s_i) = p_i \quad \text{for } i = 1, \dots, q.$$
$$p_i \ge 0 \quad \text{and} \quad \sum_{i=1}^q p_i = 1$$

Examples

- Example 1.1
 - S is an unbiased die, $S = \{1, ..., 6\}$ with q = 6, X_n is the outcome of the *n*-th throw, and $p_i = 1/6$.
- Example 1.2
 - S is the weather at a particular place, with X_n representing the weather on day $n, S = \{good, moderate, bad\}$.

$$p_1 = 1/4, p_2 = 1/2, p_3 = 1/4.$$

- Example 1.3
 - S is a book, S consists of all the symbols used, X_n is the *n*-th symbol in the book, and p_i is the frequency of the *i*-th symbol in the source alphabet.

Code alphabet, symbol, word

- Code alphabet $T = \{t_1, ..., t_r\}$ consisting of r codesymbols t_j .
 - Depends on the technology of the channel
 - Call r the radix (meaning "root" or "base")
 - Refer to the code as an *r*-ary code
 - When r = 2, binary code, $T = Z_2 = \{0, 1\}$
 - When r = 3, ternary code, $T = Z_3 = \{0, 1, 2\}$
- Code word: a sequence of symbols from *T*

Encode and Example

- To encode $s = X_1 X_2 X_3$..., we represent $X_n = s_i$ by
 - $-s_i \rightarrow w_i$ (its code word)
 - $s \rightarrow t$ (one by one)
 - we do not separate the code-words in t
- Example 1.4
 - If S is an unbiased die, as in Example 1.1, take $T = Z_2$ and let w_i be the binary representation of the source-symbol s_i = i (i = 1, ..., 6)
 - -s = 53214 → t = 10111101100
 - Could write t = 101.11.10.1.100 for clearer exposition

Define codes more precisely

- A word w in T is a finite sequence of symbols from T, its length |w| is the number of symbols.
- The set of all words in T is denoted by T*, including empty word ε.
- The set of all non-empty words in T is denoted by T^+

$$T^* = \bigcup_{n \ge 0} T^n$$
 and $T^+ = \bigcup_{n > 0} T^n$,

where $T^n = T \times \cdots \times T$

Define codes more precisely (Cont.)

- A source code (simply a code) C is a function $S \rightarrow T^+$ $w_i = C(s_i) \in T^+$, i = 1, 2, ..., q
- Regard C as a finite set of words $w_1, w_2, ..., w_q$ in T^+ .
- C can be extended to a function $S^* \rightarrow T^*$ $\mathbf{s} = s_{i_1} s_{i_2} \dots s_{i_n} \mapsto \mathbf{t} = w_{i_1} w_{i_2} \dots w_{i_n} \in T^*$
- The image of this function is the set

 $\mathcal{C}^* = \{ w_{i_1} w_{i_2} \dots w_{i_n} \in T^* \mid \text{each } w_{i_j} \in \mathcal{C}, \ n \ge 0 \}$

• The average word-length of *C* is - where $l_i = |w_i|$ $L(C) = \sum_{i=1}^q p_i l_i$.

The aim is to construct codes C

- a) there is easy and unambiguous decoding t -> s ,
 b) the average word-length L(C) is small.
- The rest of this chapter considers criterion (a), and the next chapter considers (b).
- Example 1.5
 - The code C in Example 1.4 has $l_1 = 1$, $l_2 = l_3 = 2$ and $l_4 = l_5 = l_6 = 3$, so

$$L(\mathcal{C}) = \frac{1}{6}(1+2+2+3+3+3) = \frac{7}{3}.$$

1.2 Uniquely Decodable Codes

A code C is uniquely decodable (u.d. for short) if each t
 ∈ T* corresponds under C to at most one s ∈ S*;

– in other words, the function $C: S^* \rightarrow T^*$ is one-to-one,

- Will always assume that the code-words w_i in C are distinct.
 - Under this assumption, the definition of unique decodability of C is that whenever

 $u_1 \ldots u_m = v_1 \ldots v_n$

with $u_1, \ldots, u_m, v_1, \ldots, v_n \in C$, we have m = n and $u_i = v_i$ for each *i*.

- Example 1.6
 - In Example 1.4, the binary coding of a die is not uniquely decodable.
 - Give an example.
 - Can you fix it?
- Theorem 1.7
 - If the code-words w_i in C all have the same length, then C is uniquely decodable.
- If all the code-words in *C* have the same length *l*, we call *C* **a block code of length** *l*.

- Example 1.8
 - The binary code C given by

$$s_1 \mapsto w_1 = 0, \ s_2 \mapsto w_2 = 01, \ s_3 \mapsto w_3 = 011$$

- has variable lengths, but is still uniquely decodable.
- for example, $\mathbf{t} = 001011010011 = 0.01.011.01.0.011$

$$\Rightarrow \mathbf{s} = s_1 s_2 s_3 s_2 s_1 s_3.$$

• We define

$$-\mathcal{C}_0=\mathcal{C}, \text{ and }$$

$$- \mathcal{C}_n = \{ w \in T^+ \mid uw = v \text{ where } u \in \mathcal{C}, v \in \mathcal{C}_{n-1} \text{ or } u \in \mathcal{C}_{n-1}, v \in \mathcal{C} \}$$
(1.3)

- Note:
$$C_1 = \{ w \in T^+ \mid uw = v \text{ where } u, v \in C \}.$$

n=1

• For each $n \ge 1$; we then define $C_{\infty} = \bigcup C_n$. (1.4)

- Note: if $C_{n-1} = \emptyset$ then $C_n = \emptyset$,

- Example 1.9
 - Let *C* = {0, 01, 011} as in Example 1.8. Then
 - $-\mathcal{C}_1 = ?$ $\mathcal{C}_2 = ?$ $\mathcal{C}_n = ?$ for all $n \ge 2$ $\mathcal{C}_\infty = ?$
- Theorem 1.10 (The Sardinas-Patterson Theorem)
 - A code C (finite) is uniquely decodable if and only if the sets C and C_{∞} are disjoint.
 - A code C (finite or infinite) is uniquely decodable if and only if $C_n \cap C_\infty = \emptyset$ and $C_n = \emptyset$ for some $n \ge 1$.

- Example 1.11
 - If C = {0,01,011} as in Examples 1.8 and 1.9, then $C_{\infty} = \{1, 11\}$ which is disjoint from C.
- Example 1.12
 - Let *C* be the ternary code {01, 1, 2, 210}. Then $C_1 = \{10\}$,
 - C_2 = {0} and C_3 = {1}, so 1 ∈ $C \cap C_\infty$ and thus C is not uniquely decodable.
 - Can you find an example of non-unique decodability?
- Example 1.13
 - Find an example where all finite code-sequences are decoded uniquely, but some infinite ones are not.

1.3 Instantaneous Codes

- Example 1.14
 - Consider the binary code C given by $s_1 \mapsto 0, s_2 \mapsto 01, s_3 \mapsto 11.$
 - We have $C_1 = C_2 = \cdots = \{1\}$, so $C_{\infty} = \{1\}$;
 - Thus $\mathcal{C} \cap \mathcal{C}_{\infty} = \emptyset$, so *C* is uniquely decodable
 - Consider a finite message $t = 0111 \dots$
 - We can not decode until we know how many 1's.
 - We say that *C* is not **instantaneous**.

Instantaneous Codes (cont.)

- Example 1.16
 - Consider the binary code D given by

 $s_1 \mapsto 0, \ s_2 \mapsto 10, \ s_3 \mapsto 11,$

- the reverse of the code *C* in Example 1.14
- this is uniquely decodable
- It is also instantaneous
- Formal definition
 - A code *C* is instantaneous if, for each sequence of codewords $w_{i_1}w_{i_2}, \ldots w_{i_n}$, every code-sequence beginning $t = w_{i_1}w_{i_2}, \ldots w_{i_n} \dots$ is decoded uniquely as $s = s_{i_1}s_{i_2}\dots s_{i_n}\dots$, no matter what the subsequent symbols in *t* are.

Prefix Code

- A code *C* is a prefix code if no code-word w_i is a prefix (initial segment) of any code-word w_j $(i \neq j)$; equivalently, $w_j \neq w_i w$ for any $w \in T^*$,
- that is, $c_1 = \emptyset$ in the notation
- Theorem 1.17

A code C is instantaneous if and only if it is a prefix code.

1.4 Constructing Instantaneous Codes

Constructing Instantaneous Codes (Cont.)

- A code C can be regarded as a finite set of vertices of the tree T*.
- A word w_i is a prefix of w_j if and only if the vertex w_i is dominated by the vertex w_j

- that is, there is an upward path in T^* from w_i to w_j

 C is instantaneous if and only if no vertex w_i ∈ C is dominated by a vertex w_j ∈ C (i ≠ j).

Examples

- Example 1.18
 - Let us find an instantaneous **binary** code C for a source S with five symbols s_1, \ldots, s_5 .
- Example 1.19
 - Is there an instantaneous **binary** code for this source S with word-lengths 1, 2, 3, 3, 4?
 - No, Why?
 - Is there an instantaneous **ternary** code for this source S with word-lengths 1, 2, 3, 3, 4?
 - Yes. Why?

1.5 Kraft's Inequality

- Theorem 1.20
 - There is an instantaneous r-ary code C with word-lengths l_1, \ldots, l_q , if and only if $\sum_{r=1}^{q} \frac{1}{r^{l_i}} \leq 1.$ (1.5)

$$\begin{array}{c} -\operatorname{Proof} & i=1 \\ \bullet \ \leftarrow & r^{l-l_1} < r^l \sum_{i=1}^q \frac{1}{r^{l_i}} \le r^l, \\ & \sum_{i=1}^k r^{l-l_i} < r^l \sum_{i=1}^q \frac{1}{r^{l_i}} \le r^l, \\ \bullet \ \Rightarrow & \sum_{i=1}^q r^{l-l_i} \le r^l, \\ \end{array}$$

1.6 McMillan's Inequality

- Theorem 1.21
 - There is a uniquely decodable r-ary code C with wordlengths l_1, \ldots, l_q , if and only if

$$\sum_{i=1}^{q} \frac{1}{r^{l_i}} \le 1.$$
 (1.6)

- Corollary 1.22
 - There is an instantaneous r-ary code with word-lengths l_1, \ldots, l_q , if and only if there is a uniquely decodable r-ary code with these word-lengths.

1.7 Comments on Kraft's and McMillan's Inequalities

- Comment 1.23
 - Theorems 1.20 and 1.21 do not say that an r-ary code with word-lengths l_1, \ldots, l_q is instantaneous or uniquely decodable if and only if $\sum r^{-l_i} \leq 1$
 - Examples: $C = \{0, 01, 011\}$ and $C = \{0, 01, 001\}$
- Comment 1.24
 - Theorems 1.20 and 1.21 assert that if $\sum r^{-l_i} \leq 1$ then there exist codes with these parameters which are instantaneous and uniquely decodable.
 - Example: $C = \{0, 10, 110\}$

Comments (Cont.)

- Comment 1.25
 - If an r-ary code C is uniquely decodable, then it need not be instantaneous, but by Corollary 1.22 there must be an instantaneous r-ary code with the same word-lengths.
 - Examples: $C = \{0, 01, 11\}$ and $D = \{0, 10, 11\}$
- Comment 1.26
 - The summand r^{-l_i} in $K = \sum r^{-l_i}$ corresponds to the rather imprecise notion of the "proportion" of the tree T^* above a vertex w_i of height l_i .