Coding and Information Theory Overview

Chapter 1: Source Coding
Xuejun Liang 2019 Fall

Overview

- Information Theory and Coding Theory are two related aspects of the problem of how to transmit information efficiently and accurately from a source, through a channel, to a receiver.
- Based on Mathematics areas:
- Probability Theory and Algebra
- Combinatorics and Algebraic Geometry

Important Problems

- How to compress information, in order to transmit it rapidly or store it economically
- How to detect and correct errors in information

Information Theory vs. Coding Theory

- Information Theory uses probability distributions to quantify information (through the entropy function), and to relate it to the average wordlengths of encodings of that information
- In particular, Shannon's Fundamental Theorem Guarantees the existence of good error-correcting codes (ECCs)
- Coding Theory is to use mathematical techniques to construct ECCs, and to provide effective algorithms with which to use ECCs.

Chapter 1: Source Coding

1.1 Definitions and Examples
1.2 Uniquely Decodable Codes
1.3 Instantaneous Codes
1.4 Constructing Instantaneous Codes
1.5 Kraft's Inequality
1.6 McMillan's Inequality
1.7 Comments on Kraft's and McMillan's Inequalities

1.1 Definitions and Examples

- A sequence $s=X_{1} X_{2} X_{3}$... of symbols X_{n}, emitting comes from a source S
- The source alphabet of $S=\left\{s_{1}, s_{2}, \ldots, s_{q}\right\}$
- Consider X_{n} as random variables and assume that
- they are independent and
- have the same probability distribution p_{i}.

$$
\begin{aligned}
\operatorname{Pr}\left(X_{n}=s_{i}\right)=p_{i} \quad \text { for } i=1, \ldots, q . \\
p_{i} \geq 0 \quad \text { and } \quad \sum_{i=1}^{q} p_{i}=1
\end{aligned}
$$

Examples

- Example 1.1
$-S$ is an unbiased die, $S=\{1, \ldots, 6\}$ with $q=6, X_{n}$ is the outcome of the n-th throw, and $p_{i}=1 / 6$.
- Example 1.2
$-S$ is the weather at a particular place, with X_{n} representing the weather on day $n, S=\{$ good, moderate, bad\}.

$$
p_{1}=1 / 4, p_{2}=1 / 2, p_{3}=1 / 4
$$

- Example 1.3
- S is a book, S consists of all the symbols used, X_{n} is the n th symbol in the book, and p_{i} is the frequency of the i-th symbol in the source alphabet.

Code alphabet, symbol, word

- Code alphabet $T=\left\{t_{1}, \ldots, t_{r}\right\}$ consisting of r codesymbols t_{j}.
- Depends on the technology of the channel
- Call r the radix (meaning "root" or "base")
- Refer to the code as an r-ary code
- When $r=2$, binary code, $T=Z_{2}=\{0,1\}$
- When $r=3$, ternary code, $T=Z_{3}=\{0,1,2\}$
- Code word: a sequence of symbols from T

Encode and Example

- To encode $s=X_{1} X_{2} X_{3} \ldots$, we represent $X_{n}=s_{i}$ by
$-s_{i} \rightarrow w_{i}$ (its code word)
$-s \rightarrow t$ (one by one)
- we do not separate the code-words in t
- Example 1.4
- If S is an unbiased die, as in Example 1.1, take $T=Z_{2}$ and let w_{i} be the binary representation of the source-symbol s_{i}
$=i(i=1, \ldots, 6)$
$-s=53214 \rightarrow t=10111101100$
- Could write $t=101.11 .10 .1$.100 for clearer exposition

Define codes more precisely

- A word w in T is a finite sequence of symbols from T, its length $|w|$ is the number of symbols.
- The set of all words in T is denoted by T^{*}, including empty word ε.
- The set of all non-empty words in T is denoted by T^{+}

$$
T^{*}=\bigcup_{n \geq 0} T^{n} \quad \text { and } \quad T^{+}=\bigcup_{n>0} T^{n},
$$

where $T^{n}=T \times \cdots \times T$

Define codes more precisely (Cont.)

- A source code (simply a code) C is a function $S \rightarrow T^{+}$

$$
w_{i}=\mathcal{C}\left(s_{i}\right) \in T^{+}, \quad i=1,2, \ldots, q
$$

- Regard C as a finite set of words $w_{1}, w_{2}, \ldots, w_{\mathrm{q}}$ in T^{+}.
- C can be extended to a function $S^{*} \rightarrow T^{*}$

$$
\mathbf{s}=s_{i_{1}} s_{i_{2}} \ldots s_{i_{n}} \mapsto \mathbf{t}=w_{i_{1}} w_{i_{2}} \ldots w_{i_{n}} \in T^{*}
$$

- The image of this function is the set

$$
\mathcal{C}^{*}=\left\{w_{i_{1}} w_{i_{2}} \ldots w_{i_{n}} \in T^{*} \mid \text { each } w_{i_{j}} \in \mathcal{C}, n \geq 0\right\}
$$

- The average word-length of C is
- where $l_{i}=\left|w_{i}\right|$

$$
L(\mathcal{C})=\sum_{i=1}^{q} p_{i} l_{i}
$$

The aim is to construct codes C

a) there is easy and unambiguous decoding $t->s$,
b) the average word-length $L(C)$ is small.

- The rest of this chapter considers criterion (a) , and the next chapter considers (b).
- Example 1.5
- The code C in Example 1.4 has $l_{1}=1, l_{2}=l_{3}=2$ and $l_{4}=l_{5}=$ $l_{6}=3$, so

$$
L(\mathcal{C})=\frac{1}{6}(1+2+2+3+3+3)=\frac{7}{3} .
$$

1.2 Uniquely Decodable Codes

- A code C is uniquely decodable (u.d. for short) if each t $\in T^{*}$ corresponds under C to at most one $s \in S^{*}$;
- in other words, the function $C: S^{*} \rightarrow T^{*}$ is one-to-one,
- Will always assume that the code-words w_{i} in C are distinct.
- Under this assumption, the definition of unique decodability of C is that whenever

$$
u_{1} \ldots u_{m}=v_{1} \ldots v_{n}
$$

with $u_{1}, \ldots, u_{m}, v_{1}, \ldots, v_{n} \in \mathcal{C}$, we have $m=n$ and $u_{i}=v_{i}$ for each i.

Uniquely Decodable Codes (Cont.)

- Example 1.6
- In Example 1.4, the binary coding of a die is not uniquely decodable.
- Give an example.
- Can you fix it?
- Theorem 1.7
- If the code-words w_{i} in C all have the same length, then C is uniquely decodable.
- If all the code-words in C have the same length l, we call C a block code of length l.

Uniquely Decodable Codes (Cont.)

- Example 1.8
- The binary code C given by

$$
s_{1} \mapsto w_{1}=0, s_{2} \mapsto w_{2}=01, s_{3} \mapsto w_{3}=011
$$

- has variable lengths, but is still uniquely decodable.
- for example, $\mathbf{t}=001011010011=0.01 .011 .01 .0 .011$
$-\quad \Rightarrow \quad \mathbf{s}=s_{1} s_{2} s_{3} s_{2} s_{1} s_{3}$.
- We define
- $\mathcal{C}_{0}=\mathcal{C}$, and
- $\mathcal{C}_{n}=\left\{w \in T^{+} \mid u w=v\right.$ where $u \in \mathcal{C}, v \in \mathcal{C}_{n-1}$ or $\left.u \in \mathcal{C}_{n-1}, v \in \mathcal{C}\right\}$
- Note: $\mathcal{C}_{1}=\left\{w \in T^{+} \mid u w=v\right.$ where $\left.u, v \in \mathcal{C}\right\}$.

Uniquely Decodable Codes (Cont.)

- For each $n \geq 1$; we then define $\quad \mathcal{C}_{\infty}=\bigcup_{n=1}^{\infty} \mathcal{C}_{n}$.
\quad - Note: if $\mathcal{C}_{n-1}=\emptyset$ then $\mathcal{C}_{n}=\emptyset$.
- Example 1.9
- Let $C=\{0,01,011\}$ as in Example 1.8. Then
$-\mathcal{C}_{1}=$? $\quad \mathcal{C}_{2}=$? $\quad \mathcal{C}_{n}=$? for all $n \geq 2 \quad \mathcal{C}_{\infty}=$?
- Theorem 1.10 (The Sardinas-Patterson Theorem)
- A code C (finite) is uniquely decodable if and only if the sets C and C_{∞} are disjoint.
- A code C (finite or infinite) is uniquely decodable if and only if $C_{n} \cap C_{\infty}=\emptyset$ and $C_{n}=\emptyset$ for some $n \geq 1$.

Uniquely Decodable Codes (Cont.)

- Example 1.11
- If $C=\{0,01,011\}$ as in Examples 1.8 and 1.9, then $\mathcal{C}_{\infty}=\{1$, $11\}$ which is disjoint from C .
- Example 1.12
- Let C be the ternary code $\{01,1,2,210\}$. Then $C_{1}=\{10\}$,
$-C_{2}=\{0\}$ and $C_{3}=\{1\}$, so $1 \in C \cap C_{\infty}$ and thus C is not uniquely decodable.
- Can you find an example of non-unique decodability?
- Example 1.13
- Find an example where all finite code-sequences are decoded uniquely, but some infinite ones are not.

1.3 Instantaneous Codes

- Example 1.14
- Consider the binary code C given by

$$
s_{1} \mapsto 0, s_{2} \mapsto 01, s_{3} \mapsto 11
$$

- We have $\mathcal{C}_{1}=\mathcal{C}_{2}=\cdots=\{1\}$, so $\mathcal{C}_{\infty}=\{1\}$;
- Thus $\mathcal{C} \cap \mathcal{C}_{\infty}=\emptyset$, so C is uniquely decodable
- Consider a finite message $t=0111$...
- We can not decode until we know how many 1's.
- We say that C is not instantaneous.

Instantaneous Codes (cont.)

- Example 1.16
- Consider the binary code D given by

$$
s_{1} \mapsto 0, s_{2} \mapsto 10, s_{3} \mapsto 11,
$$

- the reverse of the code C in Example 1.14
- this is uniquely decodable
- It is also instantaneous
- Formal definition
- A code C is instantaneous if, for each sequence of codewords $w_{i_{1}} w_{i_{2}}, \ldots w_{i_{n}}$, every code-sequence beginning $t=$ $w_{i_{1}} w_{i_{2}}, \ldots w_{i_{n}} \ldots$ is decoded uniquely as $s=s_{i_{1}} s_{i_{2}} \ldots s_{i_{n}} \ldots$, no matter what the subsequent symbols in t are.

Prefix Code

- A code C is a prefix code if no code-word w_{i} is a prefix (initial segment) of any code-word w_{j}
($i \neq j$); equivalently, $w_{j} \neq w_{i} w$ for any $w \in T^{*}$,
- that is, $c_{1}=\emptyset$ in the notation
- Theorem 1.17
- A code C is instantaneous if and only if it is a prefix code.

1.4 Constructing Instantaneous Codes

- $w \in T^{*}$
- $T=\left\{t_{1}, t_{2}, . ., t_{r}\right\}$

$$
w t_{1} \quad w t_{2} \quad \cdots \cdots \quad w t_{r}
$$

Constructing Instantaneous Codes (Cont.)

- A code C can be regarded as a finite set of vertices of the tree T^{*}.
- A word w_{i} is a prefix of w_{j} if and only if the vertex w_{i} is dominated by the vertex w_{j}
- that is, there is an upward path in T^{*} from w_{i} to w_{j}
- C is instantaneous if and only if no vertex $w_{i} \in C$ is dominated by a vertex $w_{j} \in C(i \neq j)$.

Examples

- Example 1.18
- Let us find an instantaneous binary code C for a source S with five symbols s_{1}, \ldots, s_{5}.
- Example 1.19
- Is there an instantaneous binary code for this source S with word-lengths $1,2,3,3,4$?
- No, Why?
- Is there an instantaneous ternary code for this source S with word-lengths $1,2,3,3,4$?
- Yes. Why?

1.5 Kraft's Inequality

- Theorem 1.20
- There is an instantaneous r-ary code C with word-lengths l_{1}, \ldots, l_{q}, if and only if

$$
\begin{equation*}
\sum_{i=1}^{q} \frac{1}{r^{l_{i}}} \leq 1 \tag{1.5}
\end{equation*}
$$

- Proof
$\cdots \quad r^{l-l_{1}}<r^{l} \sum_{i=1}^{q} \frac{1}{r^{l_{i}}} \leq r^{l}$,
$\sum_{i=1}^{k} r^{l-l_{i}}<r^{l} \sum_{i=1}^{q} \frac{1}{r^{l_{i}}} \leq r^{l}$,
- $\Rightarrow \quad \sum_{i=1}^{q} r^{l-l_{i}} \leq r^{l}$,

Figure 1.3

1.6 McMillan's Inequality

- Theorem 1.21
- There is a uniquely decodable r-ary code C with wordlengths l_{1}, \ldots, l_{q}, if and only if

$$
\begin{equation*}
\sum_{i=1}^{q} \frac{1}{r^{l_{i}}} \leq 1 . \tag{1.6}
\end{equation*}
$$

- Corollary 1.22
- There is an instantaneous r-ary code with word-lengths l_{1}, \ldots, l_{q}, if and only if there is a uniquely decodable r-ary code with these word-lengths .

1.7 Comments on Kraft's and McMillan's Inequalities

- Comment 1.23
- Theorems 1.20 and 1.21 do not say that an r-ary code with word-lengths l_{1}, \ldots, l_{q} is instantaneous or uniquely decodable if and only if $\sum r^{-l_{i}} \leq 1$
- Examples: $C=\{0,01,011\}$ and $C=\{0,01,001\}$
- Comment 1.24
- Theorems 1.20 and 1.21 assert that if $\sum r^{-l_{i}} \leq 1$ then there exist codes with these parameters which are instantaneous and uniquely decodable.
- Example: $C=\{0,10,110\}$

comments (cont.)

- Comment 1.25
- If an r-ary code C is uniquely decodable, then it need not be instantaneous, but by Corollary 1.22 there must be an instantaneous r-ary code with the same word-lengths.
- Examples: $C=\{0,01,11\}$ and $D=\{0,10,11\}$
- Comment 1.26
- The summand $r^{-l_{i}}$ in $\mathrm{K}=\sum r^{-l_{i}}$ corresponds to the rather imprecise notion of the "proportion" of the tree T^{*} above a vertex w_{i} of height l_{i}.

