Homework 8: (Chapter 5 Using an Unreliable Channel)

Exercises: 5.1, 5.2, 5.4, 5.5, 5.8, 5.9, 5.10 (30 points)

Exercise 5.1 (2%)

How many different decision rules are there for a given information channel?

Exercise 5.2 (4%)

Calculate Pr_E , where the channel Γ and the input A are as in Example 4.5 (a BSC with P = 0.8 and p = 0.9), and Δ is the ideal observer rule.

Exercise 5.4 (4%)

If $u \in A^n$ where |A| = r, and $0 \le i \le n$, then how many words $v \in A^n$ have Hamming distance d(u, v) = i? Check that these numbers, for i = 0, 1, ..., n, add up to $|A^n|$.

Exercise 5.5 (4%)

How large can a subset $C \subseteq Z_2^3$ be, if $d(u, v) \ge 2$ for all $u \ne v$ in C? Describe geometrically all the subsets attaining this bound. What is the analogous bound for subsets of Z_2^n ?

Exercise 5.8 (6%)

Let Γ be the BEC, with P > 0, and let the input probabilities be p, \bar{p} with $0 . Show how to use the binary repetition code <math>R_n$ to send information through Γ so that $\Pr_E \rightarrow 0$ as $n \rightarrow \infty$.

Exercise 5.9 (6%)

A binary channel Γ always transmits 0 correctly but transmits 1 as 1 or 0 with probabilities *P* and $Q = \overline{P}$, where 0 < P < 1. Write down the channel matrix and describe the maximum likelihood rule. If the input probabilities of 0 and 1 are *p* and \overline{p} , find Pr_E. To improve reliability, 0 and 1 are encoded as 000 and 111. Describe the resulting maximum likelihood rule; is it the same as (i) majority decoding, (ii) nearest neighbor decoding? Find the resulting rate and error-probability. What happens if instead we use the binary repetition code R_n , and let $n \rightarrow \infty$?

Exercise 5.10 (Modified) (4%)

The binary repetition code R_n , of odd length n = 2t + 1, is used to encode messages transmitted through a BSC Γ in which each digit has probabilities P and Q (= \overline{P}) of correct or incorrect transmission, and P > 1/2. Show that in this case the maximum likelihood rule, majority decoding and nearest neighbor decoding all give the same decision rule Δ .