Homework 8: (Chapter 5 Using an Unreliable Channel)

Exercises: 5.1, 5.2, 5.4, 5.5, 5.8, 5.9, 5.10 (30 points)
Exercise 5.1 (2\%)
How many different decision rules are there for a given information channel?

Exercise 5.2 (4\%)

Calculate $\operatorname{Pr}_{\mathrm{E}}$, where the channel Γ and the input A are as in Example 4.5 (a BSC with $P=0.8$ and $p=0.9$), and Δ is the ideal observer rule.

Exercise 5.4 (4\%)

If $u \in A^{n}$ where $|A|=r$, and $0 \leq i \leq n$, then how many words $v \in A^{n}$ have Hamming distance $\mathrm{d}(\mathrm{u}, \mathrm{v})=\mathrm{i}$? Check that these numbers, for $\mathrm{i}=0,1, \ldots, \mathrm{n}$, add up to $\left|A^{n}\right|$.

Exercise 5.5 (4\%)

How large can a subset $C \subseteq Z_{2}^{3}$ be, if $\mathrm{d}(u, v) \geq 2$ for all $u \neq v$ in C ? Describe geometrically all the subsets attaining this bound. What is the analogous bound for subsets of Z_{2}^{n} ?

Exercise 5.8 (6\%)

Let Γ be the BEC, with $P>0$, and let the input probabilities be p, \bar{p} with $0<p<1$. Show how to use the binary repetition code R_{n} to send information through Γ so that $\operatorname{Pr}_{E} \longrightarrow 0$ as $\mathrm{n} \longrightarrow \infty$.

Exercise 5.9 (6\%)

A binary channel Γ always transmits 0 correctly but transmits 1 as 1 or 0 with probabilities P and $Q=\bar{P}$, where $0<P<1$. Write down the channel matrix and describe the maximum likelihood rule. If the input probabilities of 0 and 1 are p and \bar{p}, find $\operatorname{Pr}_{\mathrm{E}}$. To improve reliability, 0 and 1 are encoded as 000 and 111. Describe the resulting maximum likelihood rule; is it the same as (i) majority decoding, (ii) nearest neighbor decoding? Find the resulting rate and error-probability. What happens if instead we use the binary repetition code R_{n}, and let $\mathrm{n} \rightarrow \infty$?

Exercise 5.10 (Modified) (4\%)

The binary repetition code R_{n}, of odd length $\mathrm{n}=2 \mathrm{t}+1$, is used to encode messages transmitted through a BSC Γ in which each digit has probabilities P and $Q(=\bar{P})$ of correct or incorrect transmission, and $P>1 / 2$. Show that in this case the maximum likelihood rule, majority decoding and nearest neighbor decoding all give the same decision rule Δ.

