Exercise 4.2 (6%)

Let Γ be the BSC. Find necessary and sufficient conditions (on *p* and *P*) for Γ to satisfy

(i) $Q_{00} < Q_{10}$ and $Q_{01} < Q_{11}$; (ii) $Q_{00} > Q_{10}$ and $Q_{01} < Q_{11}$; (iii) $Q_{00} > Q_{10}$ and $Q_{01} < Q_{11}$;

(iii) $Q_{00} < Q_{10}$ and $Q_{01} > Q_{11}$.

What do these conditions mean, from the point of view of the receiver?

Exercise 4.3 (4%)

Prove equation (4.7), that H(A, B) = H(B) + H(A | B). What interpretation of the equivocation H(A | B) does this imply?

Exercise 4.6 (3%)

Give an example of an information channel Γ and an input A for which H(B) < H(A), where B is the resulting output.

Exercise 4.7 (10%)

Calculate the system entropies where Γ is the binary erasure channel (BEC), introduced in §4.1, and the input probabilities of 0 and 1 are *p* and \overline{p} . Show that this channel satisfies (4.9) and (4.10).

$H(\mathcal{B} \mid \mathcal{A}) \leq H(\mathcal{B}),$	(4.9)
$H(\mathcal{A} \mid \mathcal{B}) \le H(\mathcal{A}),$	(4.10)