Homework \#2 (Chapter 1: Source Coding)

Chapter 1 Exercises: 1.2, 1.3, 1.5, 1.8, 1.9, 1.11 and two additional questions

1. ($\mathbf{1 0 \%}$) Consider the following table where a source S with 4 symbols has been encoded in binary codes with 0 and 1.

Symbol s_{i}	Code 1	Code 2	Code 3	Code 4
s_{1}	00	0	0	0
s_{2}	01	1	10	01
s_{3}	10	00	110	011
s_{4}	11	11	111	0111

Please identify which code is uniquely decodable and which code is instantaneous (or prefix)?
(Note: you do not need to prove)
2. ($\mathbf{6 \%}$) Consider the following table where two binary codes are given for a source S with four symbols s_{i} and corresponding probabilities p_{i}.

Symbol s_{i}	Probability p_{i}	Code 1	Code 2
s_{1}	0.5	00	0
s_{2}	0.25	01	10
s_{3}	0.125	00	110
s_{4}	0.125	11	111

(1) Please compute the average word length for Code 1.
(2) Please compute the average word length for Code 2.

Exercise 1.2 ($\mathbf{1 0 \%}$): Construct the sets C_{n} and C_{∞} for the ternary code $C=\{02,12,120,20,21\}$. Do the same for $C=\{02,12,120,21\}$.

Exercise 1.3 (6\%): Determine whether or not the $\operatorname{codes} C=\{02,12,120,20,21\}$ and $C=\{02$, $12,120,21\}$ considered in Exercise 1.2 are uniquely decodable. If C is not uniquely decodable, find a code-sequence which can be decoded in at least two ways.

Exercise 1.5 (4\%): A code C exhibits non-unique decodability in the form $012120.120=$ 01.212.01.20; find an element of $C \cap C_{\infty}$.

Exercise 1.8 (6\%): Show that the binary code $C=\{0,01,011,111\}$ is uniquely decodable; how should the receiver react on receiving a sequence starting 0111...1...?

Exercise 1.9 (4\%)

Is this also true for the code $D=\{0,10,110,111\}$, the reverse of the code C in Exercise 1.8 ?
Exercise 1.11 (6\%): Find an instantaneous ternary code with word-lengths 1, 2, 3, 3, 4. Is there one with word-lengths $1,1,2,2,2,2$?

