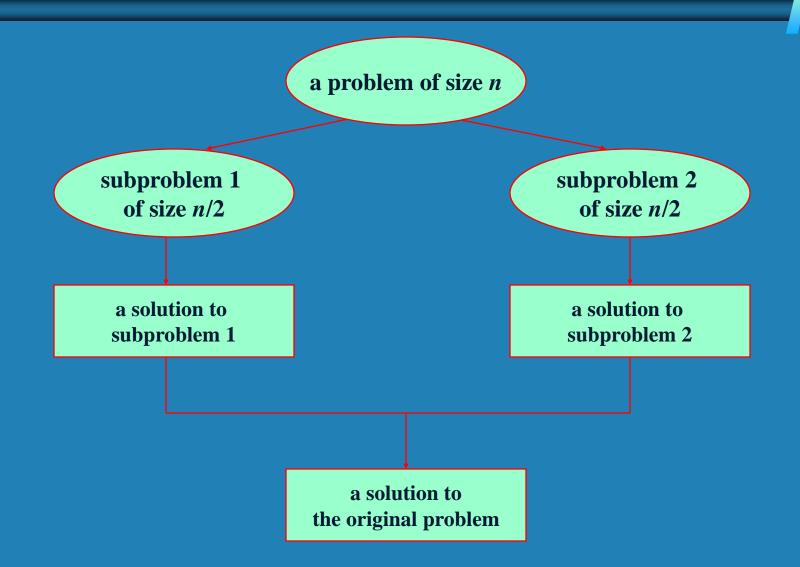
Chapter 5: Divide-and-Conquer

The most-well known algorithm design strategy:

1. Divide instance of problem into two or more smaller instances

- 2. Solve smaller instances recursively
- 3. Obtain solution to original (larger) instance by combining these solutions

Divide-and-Conquer Technique (cont.)



Divide-and-Conquer Examples

- Sorting: mergesort and quicksort
- Binary tree traversals
- Multiplication of large integers
- Matrix multiplication: Strassen's algorithm
- Closest-pair and convex-hull algorithms
- Binary search: decrease-by-half (or degenerate divide&conq.)

General Divide-and-Conquer Recurrence

$$T(n) = aT(n/b) + f(n)$$
 where $f(n) \in \Theta(n^d)$, $d \ge 0$

Master Theorem: If
$$a < b^d$$
, $T(n) \in \Theta(n^d)$
If $a = b^d$, $T(n) \in \Theta(n^d \log n)$
If $a > b^d$, $T(n) \in \Theta(n^{\log b})$

Note: The same results hold with O instead of Θ .

Examples:
$$T(n) = 4T(n/2) + n \Rightarrow T(n) \in ?$$

 $T(n) = 4T(n/2) + n^2 \Rightarrow T(n) \in ?$
 $T(n) = 4T(n/2) + n^3 \Rightarrow T(n) \in ?$

5.1 Mergesort

- *| | | | |*
- Split array A[0..n-1] in two about equal halves and make copies of each half in arrays B and C
- Sort arrays B and C recursively
- Merge sorted arrays B and C into array A as follows:
 - Repeat the following until no elements remain in one of the arrays:
 - compare the first elements in the remaining unprocessed portions of the arrays
 - copy the smaller of the two into A, while incrementing the index indicating the unprocessed portion of that array
 - Once all elements in one of the arrays are processed, copy the remaining unprocessed elements from the other array into A.

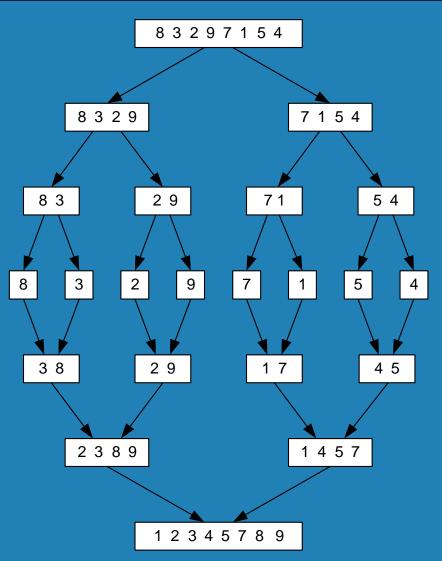
Pseudocode of Mergesort


```
ALGORITHM Mergesort(A[0..n-1])
    //Sorts array A[0..n-1] by recursive mergesort
    //Input: An array A[0..n-1] of orderable elements
    //Output: Array A[0..n-1] sorted in nondecreasing order
    if n > 1
         copy A[0..\lfloor n/2 \rfloor - 1] to B[0..\lfloor n/2 \rfloor - 1]
         copy A[n/2..n-1] to C[0..[n/2]-1]
         Mergesort(B[0..\lfloor n/2 \rfloor - 1])
         Mergesort(C[0..[n/2]-1])
         Merge(B, C, A)
```


Pseudocode of Merge


```
Merge(B[0..p-1], C[0..q-1], A[0..p+q-1])
ALGORITHM
    //Merges two sorted arrays into one sorted array
    //Input: Arrays B[0..p-1] and C[0..q-1] both sorted
    //Output: Sorted array A[0..p+q-1] of the elements of B and C
    i \leftarrow 0; j \leftarrow 0; k \leftarrow 0
    while i < p and j < q do
         if B[i] \leq C[j]
              A[k] \leftarrow B[i]; i \leftarrow i+1
         else A[k] \leftarrow C[j]; j \leftarrow j+1
         k \leftarrow k + 1
    if i = p
         copy C[j..q - 1] to A[k..p + q - 1]
    else copy B[i..p-1] to A[k..p+q-1]
```

Mergesort Example

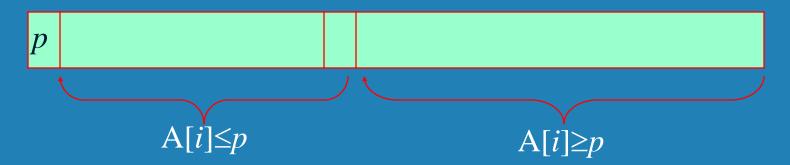


Analysis of Mergesort

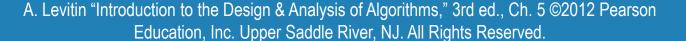
- All cases have same efficiency: $\Theta(n \log n)$
- Number of comparisons in the worst case is close to theoretical minimum for comparison-based sorting: $\lceil \log_2 n! \rceil \approx n \log_2 n 1.44n$
- Space requirement: $\Theta(n)$ (not in-place)
- **□** Can be implemented without recursion (bottom-up)

5.2 Quicksort

- Select a *pivot* (partitioning element) here, the first element
- Rearrange the list so that all the elements in the first *s* positions are smaller than or equal to the pivot and all the elements in the remaining *n*-*s* positions are larger than or equal to the pivot (see next slide for an algorithm)



- **■** Exchange the pivot with the last element in the first (i.e., \leq) subarray the pivot is now in its final position
- Sort the two subarrays recursively



Quicksort: Seudocode


```
ALGORITHM Quicksort(A[l..r])

//Sorts a subarray by quicksort

//Input: Subarray of array A[0..n-1], defined by its left and right

// indices l and r

//Output: Subarray A[l..r] sorted in nondecreasing order

if l < r

s \leftarrow Partition(A[l..r]) //s is a split position

Quicksort(A[l..s-1])

Quicksort(A[s+1..r])
```


Hoare's Partitioning Algorithm


```
ALGORITHM HoarePartition(A[l..r])
    //Partitions a subarray by Hoare's algorithm, using the first element
              as a pivot
    //Input: Subarray of array A[0..n-1], defined by its left and right
              indices l and r (l < r)
    //Output: Partition of A[l..r], with the split position returned as
              this function's value
    p \leftarrow A[l]
    i \leftarrow l; i \leftarrow r + 1
    repeat
         repeat i \leftarrow i + 1 until A[i] \ge p
         repeat j \leftarrow j - 1 until A[j] \le p
         swap(A[i], A[j])
    until i \geq j
    \operatorname{swap}(A[i], A[j]) //undo last swap when i \geq j
    swap(A[l], A[j])
    return j
```

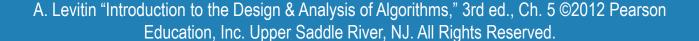
Quicksort Example

5 3 1 9 8 2 4 7

Analysis of Quicksort

III.

- Best case: split in the middle $\Theta(n \log n)$
- Worst case: sorted array! $\Theta(n^2)$
- Average case: random arrays $\Theta(n \log n)$
- **■** Improvements:
 - better pivot selection: median of three partitioning
 - switch to insertion sort on small subarrays
 - elimination of recursion
 - These combine to 20-25% improvement
- □ Considered the method of choice for internal sorting of large arrays ($n \ge 10000$)



5.3 Binary Tree Algorithms

Binary tree is a divide-and-conquer ready structure!

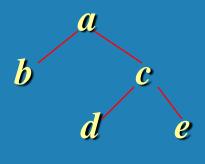
Ex. 1: Classic traversals (preorder, inorder, postorder) Algorithm Inorder(T)

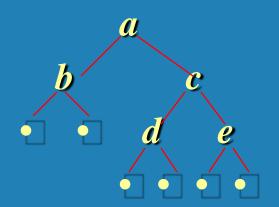
if $T \neq \emptyset$

 $Inorder(T_{left})$

print(root of T)

 $Inorder(T_{right})$

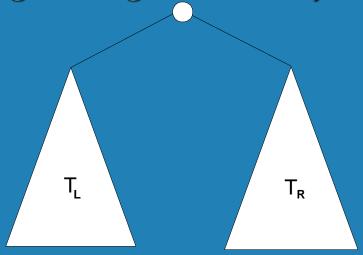




Efficiency: $\Theta(n)$

Binary Tree Algorithms (cont.)

Ex. 2: Computing the height of a binary tree



$$h(T) = \max\{h(T_{\rm L}), h(T_{\rm R})\} + 1$$
 if $T \neq \emptyset$ and $h(\emptyset) = -1$

Efficiency: $\Theta(n)$

5.4 Multiplication of Large Integers

Consider the problem of multiplying two (large) *n*-digit integers represented by arrays of their digits such as:

A = 12345678901357986429 B = 87654321284820912836

The grade-school algorithm:

$$egin{aligned} a_1 & a_2 \dots & a_n \\ & b_1 & b_2 \dots & b_n \\ \hline & (d_{10}) \, d_{11} d_{12} \dots & d_{1n} \\ & (d_{20}) \, d_{21} d_{22} \dots & d_{2n} \\ & \dots & \dots & \dots \\ & (d_{n0}) \, d_{n1} d_{n2} \dots & d_{nn} \end{aligned}$$

Efficiency: n^2 one-digit multiplications

First Divide-and-Conquer Algorithm

A small example: A * B where A = 2135 and B = 4014

A =
$$(21 \cdot 10^2 + 35)$$
, B = $(40 \cdot 10^2 + 14)$
So, A * B = $(21 \cdot 10^2 + 35) * (40 \cdot 10^2 + 14)$
= $21 * 40 \cdot 10^4 + (21 * 14 + 35 * 40) \cdot 10^2 + 35 * 14$

In general, if $A = A_1A_2$ and $B = B_1B_2$ (where A and B are *n*-digit, A_1 , A_2 , B_1 , B_2 are n/2-digit numbers),

$$A * B = A_1 * B_1 \cdot 10^n + (A_1 * B_2 + A_2 * B_1) \cdot 10^{n/2} + A_2 * B_2$$

Recurrence for the number of one-digit multiplications M(n):

$$M(n) = 4M(n/2), M(1) = 1$$

Solution: $M(n) = n^2$

Second Divide-and-Conquer Algorithm

$$A * B = A_1 * B_1 \cdot 10^n + (A_1 * B_2 + A_2 * B_1) \cdot 10^{n/2} + A_2 * B_2$$

The idea is to decrease the number of multiplications from 4 to 3:

$$(A_1 + A_2) * (B_1 + B_2) = A_1 * B_1 + (A_1 * B_2 + A_2 * B_1) + A_2 * B_2$$

I.e.,
$$(A_1 * B_2 + A_2 * B_1) = (A_1 + A_2) * (B_1 + B_2) - A_1 * B_1 - A_2 * B_2$$

which requires only 3 multiplications at the expense of (4-1) extra add/sub.

Recurrence for the number of multiplications M(n):

$$M(n) = 3M(n/2), M(1) = 1$$

Solution: $M(n) = 3^{\log_2 n} = n^{\log_2 3} \approx n^{1.585}$

Example of Large-Integer Multiplication

$$A = A_1 A_2 \text{ and } B = B_1 B_2$$

$$A * B = A_1 * B_1 \cdot 10^n + (A_1 * B_2 + A_2 * B_1) \cdot 10^{n/2} + A_2 * B_2$$

$$(A_1 * B_2 + A_2 * B_1) = (A_1 + A_2) * (B_1 + B_2) - A_1 * B_1 - A_2 * B_2$$

Example: A*B = 2135 * 4014 and n = 4

$$A_1 = 21$$
 $A_2 = 35$ $B_1 = 40$ $B_2 = 14$
 $A_1 \times B_1 = 21 \times 40 = 840$
 $A_2 \times B_2 = 35 \times 14 = 490$
 $(A_1 + A_2) \times (B_1 + B_2) = (21 + 35) \times (40 + 14) = 3,024$
 $(A_1 \times B_2) + (A_2 \times B_1) = 3,024 - 840 - 490 = 1,694$
 $A \times B = 840 \times 10000 + 1694 \times 100 + 490 = 8,569,890$

Example of Large-Integer Multiplication

Example: 2135 * 4014

$$c = a * b = (a_1 10^{n/2} + a_0) * (b_1 10^{n/2} + b_0)$$

= $(a_1 * b_1) 10^n + (a_1 * b_0 + a_0 * b_1) 10^{n/2} + (a_0 * b_0)$
= $c_2 10^n + c_1 10^{n/2} + c_0$,

 $c_2 = a_1 * b_1$ is the product of their first halves, $c_0 = a_0 * b_0$ is the product of their second halves, $c_1 = (a_1 + a_0) * (b_1 + b_0) - (c_2 + c_0)$ is the product of the sum of the a's halves and the sum of the b's halves minus the sum of c_2 and c_0 .

Strassen's Matrix Multiplication

Strassen observed [1969] that the product of two matrices can be computed as follows:

Formulas for Strassen's Algorithm

$$\mathbf{M}_1 = (\mathbf{A}_{00} + \mathbf{A}_{11}) * (\mathbf{B}_{00} + \mathbf{B}_{11})$$

$$\mathbf{M}_2 = (\mathbf{A}_{10} + \mathbf{A}_{11}) * \mathbf{B}_{00}$$

$$\mathbf{M_3} = \mathbf{A_{00}} * (\mathbf{B_{01}} - \mathbf{B}_{11})$$

$$\mathbf{M_4} = \mathbf{A_{11}} * (\mathbf{B_{10}} - \mathbf{B_{00}})$$

$$\mathbf{M_5} = (\mathbf{A_{00}} + \mathbf{A_{01}}) * \mathbf{B}_{11}$$

$$\mathbf{M}_6 = (\mathbf{A}_{10} - \mathbf{A}_{00}) * (\mathbf{B}_{00} + \mathbf{B}_{01})$$

$$\mathbf{M}_7 = (\mathbf{A}_{01} - \mathbf{A}_{11}) * (\mathbf{B}_{10} + \mathbf{B}_{11})$$

Analysis of Strassen's Algorithm

If n is not a power of 2, matrices can be padded with zeros.

Number of multiplications:

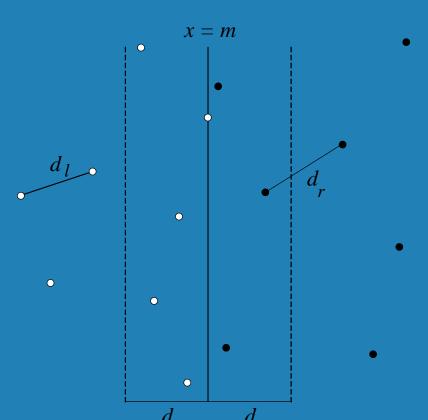
$$M(n) = 7M(n/2), M(1) = 1$$

Solution: $M(n) = 7^{\log 2^n} = n^{\log 2^7} \approx n^{2.807}$ vs. n^3 of brute-force alg.

Algorithms with better asymptotic efficiency are known but they are even more complex.

5.5 Closest-Pair Problem by Divide-and-Conquer

Step 1 Divide the points given into two subsets P_l and P_r by a vertical line x = m so that half the points lie to the left or on the line and half the points lie to the right or on the line.



Closest Pair by Divide-and-Conquer (cont.)

- Step 2 Find recursively the closest pairs for the left and right subsets.
- Step 3 Set $d = \min\{d_l, d_r\}$ We can limit our attention to the points in the symmetric vertical strip S of width 2d as possible closest pair. (The points are stored and processed in increasing order of their y coordinates.)
- Step 4 Scan the points in the vertical strip S from the lowest up. For every point p(x,y) in the strip, inspect points in in the strip that may be closer to p than d. There can be no more than S such points following P on the strip list!

Efficiency of the Closest-Pair Algorithm

Running time of the algorithm is described by

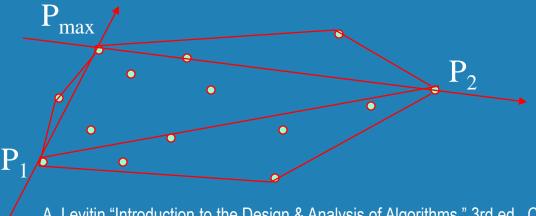
$$T(n) = 2T(n/2) + M(n)$$
, where $M(n) \in O(n)$

By the Master Theorem (with
$$a=2, b=2, d=1$$
)
$$T(n) \in O(n \log n)$$

Quickhull Algorithm

Convex hull: smallest convex set that includes given points

- \blacksquare Assume points are sorted by x-coordinate values
- Identify *extreme points* P_1 and P_2 (leftmost and rightmost)
- Compute *upper hull* recursively:
 - find point P_{max} that is farthest away from line P_1P_2
 - compute the upper hull of the points to the left of line $P_1 P_{
 m max}$
 - compute the upper hull of the points to the left of line $P_{\mathrm{max}}P_2$
- Compute *lower hull* in a similar manner



Efficiency of Quickhull Algorithm

- **
- Finding point farthest away from line P_1P_2 can be done in linear time
- Time efficiency:
 - worst case: $\Theta(n^2)$ (as quicksort)
 - average case: $\Theta(n)$ (under reasonable assumptions about distribution of points given)
- If points are not initially sorted by x-coordinate value, this can be accomplished in $O(n \log n)$ time
- Several $O(n \log n)$ algorithms for convex hull are known

