Chapter 7= Space-for-time tradeofts '

rVru
T\wWo varieties of space-for-time algorithms:

Input.enhancement — pPreprocess the mput (or Its part) to
store some Info to be used later inisolving the problem

counting methods for sorting
string searching algorithms

prestructuring — Preprocess the Input to:make accessing Its
elements easier.

nashing
Indexing schemes (e.g., B-trees)

111

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 1

7.1 Sorting by Counting

Comparison-counting Sort
for- each element of:a list to be sorted, count the total number: of
elements smaller: than this element and record the results in a table

Example of sorting by comparison counting

Array A[0..5]

Initially

After passi =0
After pass i =
After pass |

After pass |
After pass |
Final state

Array 5[0..5]

A

'F

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

L §y

Seucdocode off Comparison-counting Sort

return S

ALGORITHM ComparisonCountingSort(A|0..n — 1])

//Sorts an array by comparison counting
[Mnput: An array A[0..n — 1] of orderable elements
//Output: Array S[0..n — 1] of A’s elements sorted in nondecreasing order
fori < Oton — 1do Count[i] <0
fori <~ Oton —2do
for j «—i+1ton —1do
if A[i] < A[J]
Count|j]
else Count|i|
fori < 0ton —1do S[Count[i]] < Ali]

«— Count
«— Count

I'rr

Jl+1
i+ 1

time efficiency ®(n2): Is the same as the selection Sort

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

SOKtiNg by distribution counting

EXAMPLE:
Consider sorting the array: 13, 11, 12, 13, 12, 12
Compute frequencies and distribution:

Distribution value indicates

position of:last occurrence of

the array value in the sorted Frequencies
array. Distribution values

Array values

Process the array from right to left
put each array value in

e e - Al5]l =12
the position indicated by 4] = 12
distribution value and FAEIERE!
reduce the distribution j ﬁ} - ﬁ
value by 1 A0l =13
<=
—~ -
m A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson
! Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 4

PSeucdocode oft distribution counting

114

ALGORITHM DistributionCountingSort(A[0..n — 1], [, u)

//Sorts an array of integers from a limited range by distribution counting
/Mnput: An array A|0..n — 1] of integers between [and u (I < u)
//Output: Array S[0..n — 1] of A’s elements sorted in nondecreasing order
for j < Otou —[do D[j] <0 [Mnitialize frequencies
fori < Oton — 1do D[A[i]—[] < D[A[i] —]+ 1//compute frequencies
for j < 1tou — [do D|j]| < D[j — 1]+ D|J] /Ireuse for distribution
fori < n — 1 downto 0 do

J < Ali]—1

SID[j] - 1] < Al{]

D[j] < D[j] -1
return S

Time efficiency: ©(n)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

L §y

141

7.2 Review: String searching by brute force

rr

rVru
pattern: a string of: m characters to search for

text: a (long) string of N characters to search In

Brute force algorithm
Step L' Align pattern at beginning of text

Step 2 Moving frrom Ieft to right, compare each character of
pattern to the corresponading character in text until
either: all'characters are found to match (successtul
search) or a mismatch Is detected

Step 3 While a mismatch Is detected and the text IS not yet
exhausted, realign pattern one position to the right and
rrepeat Step 2

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

STEING Searching Y PrePrOCeSSINg '

rVru
Several string searching algorithms are based on the input

enhancement 1dea of: Preprocessing the pattern

Knuth-Morris-Pratt (KMP): algorithm preprocesses
pattern left to right to get useful information for: later

searching

Boyer -IMoore algorithm preprocesses pattern right to left
and store imformation into two talles

Horspool’s algorithm simplifies the Boyer-Moore algorithm
Py UsIng just one table

14

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

L §y

L §y

Horspool’s Algorithm

r'rr

A simplified version ofi Boyer-Moore algorithm:

il

PrEPrOCESSES pattern to generate a shift table that
determines how much to shifit the patterniwnen a
misSmatch OCCUrs

always makes a shiftt based on the text’s character C
aligned with the last character in the pattern accoraing
to the shift table’s entry for C

C

EARBER

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

How far: to shifit?
'y

rVru
[Look at first (Fightmost) character in text that was compared:

[he character Is not In the pattern
..... C.'eeeeenennnen... (enotinpattern)

['he character Is in the pattern (but not the rightmost)

..... O........0000022....... (O0cCcursonce in pattern)
BAOBAB
..... A.........cccuueeeo.... (Aoccurstwice in pattern)
BAOBAB

BAOBAB

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9

Shift table
I
Shift sizes can be precomputed by the formula

distance from ¢’s rightmost 0CCUrFENCe 1N pattern
t(c) = among Its first m-1 characters toits right end

pattern’s length m, otherwise

Py scanning pattern before search begins and stored in a
table called shift table

Shift table i1s indexed by text and pattern alphabet
Eg, for BAOBAB:

EHIHEEEEEIWEEEEEHIIMIH

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Example of Horspool’s alg. application

18
u
A1a]clo sz ols 5 31/ ol alals 7o v n x ¥ 2 _

112166]6/6/6/66[s/s/6\06 3]s 66 6 616 66 6/6 6 s

BARD LOVED BANANAS
BAOBAB
BAOBAB
BAOBAB
BAOBAB (unsuccessful search)

111

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 11

Boyer-Moore algorithm
r'rs

Yy v u
Based on same two ideas:

comparing pattern characters to text firom right to left

precomputing smift sizes in two tables

bad-symbol table indicates how much to shift based on
text’s character causing a mismatch

good-suffix table indicates now much to shifit based on
matched part (suffix) of the pattern

111

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12

Bad-symbol st in Boyer-Moore algorithm
I

If the rightmost character of the pattern doesn’t match, BM
algorithm acts as Horspool’s

Ifithe rightmost character ofithe pattern does match, BiM
compares preceding characters right to left until either: all
pattern’s characters match or a mismatch on text’s
character ¢ Is encountered after k> 0 matches

= I T
pattern IR

pad-symbol shift" d; = max{t,(c) - k; 1}, Where t,(C) IS pre-
= computed by Horspool’s algorithm

'

o A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson
! Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13

Good-suffix shift in Boyer-I\oore algorithm”’
Good-suffix shift d; 1S applied after 0'< k < m last characters
Were matched

d5(k) = the distance between matched suffix ofisize k and Its
rightmost occurrence in the pattern that 1S not preceded by,
the same character: as the matched suffix

Example: WOWWOW d,(1) =2, d,(38) =3

—— R

111

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 14

Good-suffix shift in Boyer-Moore algorithm
I

[fithere IS no suchioccurrence, match the longest suffix of
With
corresponding prefix ofithe pattern;

Example: WOWWOW d,(2) =5, 0,(4) =95, d;(5) =5

If: there are no such suffix-prefix matches, d; (k) = m

et ENCIE

"
|<~
—~ A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 15

Good-suffix shift in the Boyer-Maoore alg. (cont.)

[
After matching successfully 0 < k < m characters, the algorithm
shifts the pattern right by

d = max {d;, d;}
where d; = max{t;(c) - k; 1} Is bad-symbol shift
d5(K) 1S good-suffix shift

text [) A R
patterr _x

111

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 16

L §y

141

Boyer-Moore Algorithm (cont.)

Step 1
Step 2
Step's
Step 4

rr

rrau

Fill'in the bad-symibol shift table

Fill'in the good-suffix shift table

Align the pattern against the beginning ofithe text
Repeat until'a matching substring Is found or: text enas:
Compare the corresponding characters rght to left.

If- no characters match, retrieve entry t,(c) from the
bad-symbol table for the text’s character ¢ causing the
mismatch and shift the pattern to the right by t;(c).
I1:0'< k < m characters are matched, retrieve entry t;(c)
from the bad-symbol table for the text’s character C
causing the mismatch and entry d;(k) frrom the good-
suifix table and shift the pattern to the right by

d'= max {d, d;}
where d; = max{t,(c) - k; 1}.

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 17

Example of: Boyer-Moore alg. application

I
alalelo x slclalx 9 03/ w0 slalala/ro vIu/x]x):|_|

112166]6/6/6/66[s/s/6\06 3]s 66 6 616 66 6/6 6 s

B
B

1

o
II:plt.lj

S s _
OBA
(K) =6

SE

-

«patern o,
BEZ2E

s momna |5

4 BAOBAB 5

BEn

KNEW ABOUT BAOBAGBS
B
BAOBARB

dy=t()-2=4

0 (2) =5
BAOBARB
g =t()1=5
do(1) =2

B A OB A B (success)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 18

Boyer-Moore example firom their paper

vy v owm
2[3[c]2|z|#[c]a]s|3 x]z uw|olz|alxs|r|uv|wx]x|s |
E A B B R R R R R N R RE R RERGT

Find patterni AT _THAT In
WHICH FINALLY HALTS. AT THAT

=
ﬁ‘
—~ A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 19

Boyer-Moore example frrom exercise

How many character comparisons will the Boyer-Moore
algorithm make in searching for the pattern in the
binary text of 1000 zeros?

the bad-symbol table the good-suffix table

| Yy
'F

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 20

111

7.5 Hashing '

rrau

A very efficient method for implementing a
dictionary, I.e., a set with the operations:
find
INSert
delete

Based on representation-change and space-for-time
tradeoft 1cdeas

Important applications:
symbol tables
databases (extendible hashing)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 21

Hash tables and hash functions
'y

rrau
T'he 1dea of:hashing 1s to map keys of a given file of size n into

a table of:size m, called the hash table, by using a predefined
function, called the hash function,
n: K— location (cell)in the hash table

Example: student records, key = SSN. Hash function:
N(K)'= Kmod m" where m 1s some integer: (typically, prime)
Ifim = 1000, where Is recordwith SSN= 314159265 stored?

Generally, a hash function should:
e easy to compuite
distribute keys about evenly throughout the hash table

141

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 22

L §y

Collisions
'yl

I (K = N(KS); there 1s a callision

Good hash functions result in fewer: collisions but some
collisions should be expected (birthday paradox)

Two principal hashing schemes handle collisions differently:

Qpen hashing
— each cell’is a header of:linked list ofiall keys hashed to it

Closed hashing
one key per: cell
In case oficollision, finds another: cell by
linear probing: use next free bucket
double hashing: use second hash function to compute increment

111

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 23

Open hashing (Separate chaining) ’P

rrau
Keys are stored in linked lists outside a hash table whose
elements serve as the lists’ headers.
Example: A, FOOL, AND, HIS, MONEY, ARE, SOON, PARTED
N(K) = sum of: K ‘s letters’ positions in the alphabet MOD 13

Key | A [FOOL | ANDITHIS | MONEY [ARE [SOON | PARTED

hK) [1] 9 6 10 7 11 11 12
0 1 2 3 4 5 6 { 8 9 10 11 12
A AND MONEY EFOOLL HIS ARE PARTED
. SOON
—~ .
. oy SearC\h_ef@lrlrlﬁthion to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson o

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Open hashing (cont.) '

rVru
If:hash function distributes keys uniformly, average length of
linked list will'be o = n/m. This ratio Is called load factor.

Average number ofiprobes in successtul; S, and unsuccesstul
searches, U:

S=1+a/2, U=a
lLoad a is typically kept small (ideally, about 1)

Open hashing still'works it n>m

14

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 25

L §y

Closed hashing (Open addressing) ’AP

rVru
Keys are stored inside a hash table.

Key A [EFOOL | AND | HIS | MONEY | ARE | SOON | PARTED

h(K) 1 9 6 10 7 11 11 12
0 1 234 5 6 7 8 o 10 11 12

A

A FOOL

A AND FOOL

A AND FOOL |HIS

A AND | MONEY FOOL |HIS

A AND | MONEY FOOL |HIS | ARE

A AND | MONEY FOOL |HIS | ARE [SOON
;:HDARTED A AND | MONEY FOOL |HIS | ARE [SOON
o

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 26

L §y

il

Closed hashing (cont.) et

[Does not Work ifin >m
AV0Ids poInters
Deletions are not straightforward

Numiber: of: prolbes to find/insert/delete a key depends on
load factor o = n/m (hash table density) and collision
resolution strategy. For linear probing:

S'= (%) (1+ 1/(1- o) and U= (Y2) (1+ 1/(1- o)?)
As the table gets filled (o approaches 1), number: of: prolbes
Inlinear probing Increases dramatically:

50%

75% 2.5
90% 5.9

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 27

L §y

14

7.4 B-Trees

I

All data records (or record keys) are stored at the leaves, In
INcreasing order ofithe keys

'he parental nodes are used for indexing
Keys are interposed with pointers to: children.
Key left to a pointer < all keys in child pointed by the pointer
< key right to the pointer:

In addition, a B-tree of order m = 2 must satisfy the
following structural properties:
Tihe root IS either a leaf:or has between 2 and m children.

Each node, except for the root and the leaves, has between m/2 and
m children

The tree Is balanced, 1.e., all its leaves are at the same level.

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

28

B-1Tirees (Cont.) et

Example ofia B-tree of:order 4

|20] [51]] ||
IEDNEC I |25 [34] |40] | leof |] [

Search operation in B-tree

B-tree often used for indexing large data file
Nodes represent disk pages

Minimizing the node accesses (minimizing the height) wills minimizes
ISk aCcCesses.

A

'F

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 29

L §y

B-1Tirees (Cont.) el

For any B-tree of: order m with ninodes and height =0, we
nave the following ineguality

h—1

n>1+ Z 2(m/21 Y ([m/21 = 1) + 2[m/2]" 1.

=1

1'hiS gives an upper: bound ofih

Example: for a file of: 200 million records, We have

order m 50 100 250

h’s upper bound 6 5 4
- m
=
m A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson
8 Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 30

	Slide 1: Chapter 7: Space-for-time tradeoffs
	Slide 2: 7.1 Sorting by Counting
	Slide 3: Seudocode of Comparison-counting Sort
	Slide 4: Sorting by distribution counting
	Slide 5: Pseudocode of distribution counting
	Slide 6: 7.2 Review: String searching by brute force
	Slide 7: String searching by preprocessing
	Slide 8: Horspool’s Algorithm
	Slide 9: How far to shift?
	Slide 10: Shift table
	Slide 11: Example of Horspool’s alg. application
	Slide 12: Boyer-Moore algorithm
	Slide 13: Bad-symbol shift in Boyer-Moore algorithm
	Slide 14: Good-suffix shift in Boyer-Moore algorithm
	Slide 15: Good-suffix shift in Boyer-Moore algorithm
	Slide 16: Good-suffix shift in the Boyer-Moore alg. (cont.)
	Slide 17: Boyer-Moore Algorithm (cont.)
	Slide 18: Example of Boyer-Moore alg. application
	Slide 19: Boyer-Moore example from their paper
	Slide 20: Boyer-Moore example from exercise
	Slide 21: 7.3 Hashing
	Slide 22: Hash tables and hash functions
	Slide 23: Collisions
	Slide 24: Open hashing (Separate chaining)
	Slide 25: Open hashing (cont.)
	Slide 26: Closed hashing (Open addressing)
	Slide 27: Closed hashing (cont.)
	Slide 28: 7.4 B-Trees
	Slide 29: B-Trees (Cont.)
	Slide 30: B-Trees (Cont.)

