11.1 Lower Bounds

Lower bound: an estimate on a minimum amount of work

 needed to solve a given problemExamples:

- number of comparisons needed to find the largest element in a set of n numbers
- number of comparisons needed to sort an array of size n
- number of comparisons necessary for searching in a sorted array
- number of multiplications needed to multiply two n-by- n matrices

Lower Bounds (cont.)

- Lower bound can be
- an exact count
- an efficiency class (Ω)
- Tivht lower bound: there exists an algorithm with the same effifiency as the lower bound

Problem
sorting
searching in a sorted array
element uniqueness
n-digit integer multiplication
multiplication of n-by- n matrices

Lower bound
$\Omega(n \log n)$
$\Omega(\log n)$
$\Omega(n \log n)$
$\Omega\left(n^{2}\right)$
$\Omega\left(w^{2}\right)$

Tightiness
yes
yes
yes
unknown
unknown

- trivial lower bounds
- information-theoretic arguments (decision trees)
- adversary arguments
- problem reduction
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 11 O2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Trivial Lower Bounds

Thivial lower bownds: based on counting the number of items that must be processed in input and generated as output

Examples

- finding max element
- polynomial evaluation
- sorting
- element uniqueness
- Hamiltonian circuit existence

Conclusions

- may and may not be useful
- be careful in deciding how many elements must be processed
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 11 O2012 Pearson

Adversary Arguments

Adversary argument: a method of proving a lower bound by playing role of adversary that makes algorithm work the hardest by adjusting input

Example 1: "Guessing" a number between 1 and n with yes/no questions
Adversary: Puts the number in a larger of the two subsets generated by last question

Example 2: Merging two sorted lists of size n

$$
a_{1}<a_{2}<\ldots<a_{n} \text { and } b_{1}<b_{2}<\ldots<b_{n}
$$

Adversary: $a_{i}<b_{j}$ iff $i<j$
Output $b_{1}<a_{1}<b_{2}<a_{2}<\ldots<b_{n}<a_{n}$ requires $2 n-1$ comparisons of adjacent elements
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 11 O2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Lower Bounds by Problem Reduction

Idea: If problem P is at least as hard as problem Q, then a lower bound for Q is also a lower bound for P.
Hence, find problem Q with a known lower bound that can be reduced to problem P in question.

Example: P is finding MST for n points in Cartesian plane Q is element uniqueness problem (known to be in $\Omega(n \log n)$)

11.2 Decision Trees

Decision tree - a convenient model of algorithms involving comparisons in which:

- internal nodes represent comparisons
- leaves represent outcomes

Decision tree for finding a minimum of three numbers

Decision Trees and Sorting Algorithms

Decision tree for the tree-element selection sort

A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 11 O2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Decision Trees and Sorting Algorithms

- Any comparison-based sorting algorithm can be represented by a decision tree
- Number of leaves (outcomes) $\geq n$!
- Height of binary tree with $n!$ leaves $\geq\left\lceil\log _{2} n!\right\rceil$
- Minimum number of comparisons in the worst case $\geq\left\lceil\log _{2} n!\right\rceil$ for any comparison-based sorting algorithm
$\square\left\lceil\log _{2} n!\right\rceil \approx n \log _{2} n$
- This lower bound is tight (mergesort)

11.3 Classifying Problem Complexity

Is the problem tractable, i.e., is there a polynomial-time $(O(p)(n))$ algorithm that solves it?

Possible answers:

- yes (give examples)
- no
- because it's been proved that no algorithm exists at all (e.g., Turing's halting problem)
- because it's been be proved that any algorithm takes exponential time
unknown
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 11 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Problem Types: Optimization and Decision

- Optimization problem: find a solution that maximives or minimives some objective function
- Decision problem: answer yes/no to a question

Many problems have decision and optimization versions.
E.g.: traveling salesman problem

- optimization: find Hamiltonian cycle of minimum length
- decision: find Hamiltonian cycle of length $\leq m$

Decision problems are more convenient for formal investigation of their complexity.
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 11 O2012 Pearson

Class P

P: the class of decision problems that are solvable in $O(p(n))$ time, where $p(n)$ is a polynomial of problem's input size n

Examples:

- searching
- element uniqueness
- graph connectivity
- graph acyclicity
- primality testing (finally proved in 2002)
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 11 O2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Class NP

NP (nondeterministic polynomial): class of decision problems whose proposed solutions can be verified in polynomial time = solvable by a nondeterministic polynomial algorithm

A nondeterministic polynomial alvorithm is an abstract two-stage procedure that:

- generates a random string purported to solve the problem
- checks whether this solution is correct in polynomial time By definition, it solves the problem if it's capable of generating and verifying a solution on one of its tries

Why this definition?

- led to development of the rich theory called "computational complexity"
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 11 O2012 Pearson

Example: CNF satisfiability

Problem: Is a boolean expression in its conjunctive normal form (CNI) satisfiable, i.e, are there values of its variables that makes it true?

This problem is in NP. Nondeterministic algorithm:

- Guess truth assignment
- Substitute the values into the CNF formula to see if it evaluates to true

Example: $(\mathrm{A}|\neg \mathrm{B}| \neg \mathrm{C}) \&(\mathrm{~A} \mid \mathrm{B}) \&(\neg \mathrm{~B}|\neg \mathrm{D}| \mathrm{E}) \&(\neg \mathrm{D} \mid \neg \mathrm{E})$
Truth assignments:

ABCDE
00000

11111
Checking phase: O(w)
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 11 O2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

What problems are in NP?

- Hamiltonian circuit existence
- Partition problem: Is it possible to partition a set of n integers into two disjoint subsets with the same sum?
- Decision versions of TSP, knapsack problem, graph coloring, and many other combinatorial optimivation problems. (Hew exceptions include: MST, shortest paths)
- All the problems in P can also be solved in this manner (no guessing is necessary), so we have:

$$
P \subseteq N P
$$

B Big question: $P=N P$?

NP-Complete Problems

A decision problem D is NP-complete if it's as hard as any problem in NP, i.e.,
$\square \quad D$ is in NP

- every problem in NP is polynomial-time reducible to D

Cook's theorem (1971): CNF-sat is NP-complete
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 1 O2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

NP-Complete Problems (cont.)

Other $N P$-complete problems obtained through polynomial-

 time reductions from a known $N P$-complete problem

Examples: TSP, knapsack, partition, graph-coloring and hundreds of other problems of combinatorial nature

$P=N P$? Dilemma Revisited

- $P=N P$ would imply that every problem in $N P$, including all N^{P}-complete problems, could be solved in polynomial time
- If a polynomial-time algorithm for just one $N P$-complete problem is discovered, then every problem in NP can be solved in polynomial time, i.e., $P=N P$

- Most but not all researchers believe that $P \neq N P$, i.e. P is a proper subset of $N P$
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 11 O2012 Pearson

