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Chapter 10: Iterative Improvement

Algorithm design technique for solving optimization problems 

Start with a feasible solution

Repeat the following step until no improvement can be found:

• change the current feasible solution to a feasible solution with a better 
value of the objective function

Return the last feasible solution as optimal

Note: Typically, a change in a current solution is “small” (local 
search) 

Major difficulty: Local optimum vs. global optimum
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Important Examples

simplex method 

Ford-Fulkerson algorithm for maximum flow problem

maximum matching of graph vertices

Gale-Shapley algorithm for the stable marriage problem

local search heuristics
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10.1 Linear Programming

Linear programming (LP) problem is to optimize a linear function 

of several variables subject to linear constraints:

maximize (or minimize)  c1 x1 + ...+ cn xn

subject to ai1x1+ ...+ ain xn ≤ (or ≥ or =) bi , i = 1,...,m 

x1 ≥ 0, ... , xn ≥ 0

The function z = c1 x1 + ...+ cn xn is called the objective function;

constraints x1 ≥ 0, ... , xn ≥ 0 are called nonnegativity constraints
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Example

maximize    3x + 5y

subject to      x +   y ≤ 4

x + 3y ≤ 6

x ≥ 0,  y ≥ 0

x

y

( 0, 2 )

( 0, 0 ) ( 4, 0 )

( 3, 1 )

x + y = 4

x + 3y = 6

Feasible region is the 

set of points defined 

by the constraints
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Geometric solution

maximize 3x + 5y

subject to x +   y ≤ 4

x + 3y ≤ 6

x ≥ 0,  y ≥ 0

Optimal solution: x = 3, y = 1

Extreme Point Theorem Any LP problem with a nonempty bounded 

feasible region has an optimal solution; moreover, an optimal solution can 

always be found at an extreme point of the problem's feasible region.
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3 possible outcomes in solving an LP problem

has a finite optimal solution, which may no be unique

unbounded: the objective function of maximization 

(minimization) LP problem is unbounded from above 

(below) on its feasible region  

infeasible: there are no points satisfying all the constraints, 

i.e. the constraints are contradictory
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The Simplex Method

The classic method for solving LP problems; 

one of the most important algorithms ever invented

Invented by George Dantzig in 1947

Based on the iterative improvement idea:

Generates a sequence of adjacent points of the 

problem’s feasible region with improving values of the 

objective function until no further improvement is 

possible
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Standard form of LP problem

must be a maximization problem  

all constraints (except the nonnegativity constraints) must be 
in the form of linear equations with nonnegative right-hand 
sides.

all the variables must be required to be nonnegative

Thus, the general linear programming problem in standard

form with m constraints and n unknowns (n ≥ m) is

maximize  c1 x1 + ...+ cn xn

subject to ai1x1+ ...+ ain xn = bi ,  i = 1,...,m,
x1 ≥ 0, ... , xn ≥ 0

Every LP problem can be represented in such form
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Example

maximize   3x + 5y maximize 3x + 5y + 0u + 0v

subject to     x +   y ≤ 4                subject to   x +   y +  u = 4 

x + 3y ≤ 6 x + 3y +  v = 6 

x≥0,   y≥0 x≥0,  y≥0,  u≥0,  v≥0

Variables u and v, transforming inequality constraints into

equality constrains, are called slack variables
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Basic feasible solutions

A basic solution to a system of m linear equations in n unknowns 
(n ≥ m) is obtained by setting n – m variables to 0 and solving the 
resulting system to get the values of the other m variables.  The 
variables set to 0 are called nonbasic; the variables obtained by 
solving the system are called basic. 

A basic solution is called feasible if all its (basic) variables are 
nonnegative.

Example x +   y + u = 4 

x + 3y        + v = 6 

(0,  0,  4,  6) is basic feasible solution 

(x, y are nonbasic; u, v are basic)

There is a 1-1 correspondence between extreme points of LP’s 
feasible region and its basic feasible solutions. 
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Simplex Tableau

maximize    z = 3x + 5y + 0u + 0v

subject to            x +   y +  u = 4 

x + 3y +   v = 6 

x≥0,  y≥0,  u≥0,  v≥0

basic 

variables

objective row

basic feasible solution

(0, 0, 4, 6)

1 1 1 0 4

1 3 0 1 6

3 5 0 0 0

x y u v

u

v

value of z at (0, 0, 4, 6)
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Outline of the Simplex Method

Step 0 [Initialization]  Present a given LP problem in standard form and 
set up initial tableau. 

Step 1 [Optimality test] If all entries in the objective row are nonnegative —
stop: the tableau represents an optimal solution.

Step 2 [Find entering variable] Select (the most) negative entry in the 
objective row.  Mark its column to indicate the  
entering  variable and the pivot column. 

Step 3 [Find departing variable]  For each positive entry in the pivot column, 
calculate the θ-ratio by dividing that row's entry in the rightmost column by 
its entry in the pivot column.  (If there are no positive entries in the pivot 
column — stop: the problem is unbounded.)  Find the row with the smallest 
θ-ratio, mark this row to indicate the departing variable and the pivot row. 

Step 4 [Form the next tableau] Divide all the entries in the pivot row by its 
entry in the pivot column. Subtract from each of the other rows, including the 
objective row, the new pivot row multiplied by the entry in the pivot column 
of the row in question. Replace the label of the pivot row by the variable's 
name of the pivot column and go back to Step 1.
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Example of Simplex Method Application

1 1 1 0 4

1 3 0 1 6

3 5 0 0 0

x y u v

u

v

maximize    z = 3x + 5y + 0u + 0v

subject to            x +   y +  u = 4 

x + 3y +   v = 6 

x≥0,  y≥0,  u≥0,  v≥0

2

3
0 1

1

3
2

1

3
1 0

1

3
2

4

3
0 0

5

3
10

x y u v

u

y

maximize    z = 3x + 5y + 0u + 0v Step 4

subject to            x +   y +  u = 4 

x + 3y +   v = 6 

x≥0,  y≥0,  u≥0,  v≥0

basic feasible sol. 
(0, 0, 4, 6)

z = 0

basic feasible sol. 
(0, 2, 2, 0)

z = 10

basic feasible sol. 
(3, 1, 0, 0)

z = 14

1 0
3

2

1

2
3

0 1
1

2
1

2
1

0 0 2 1 14

x y u v

x

y

pivotpivototherotherother

pivotpivotpivotpivot

rowcrowrow

crowrow

*

/

,
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Notes on the Simplex Method

Finding an initial basic feasible solution may pose a problem

Theoretical possibility of cycling 

Typical number of iterations is between m and 3m, where m is 

the number of equality constraints in the standard form

Worse-case efficiency is exponential

More recent interior-point algorithms such as Karmarkar’s

algorithm (1984) have polynomial worst-case efficiency and

have performed competitively with the simplex method in

empirical tests
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10.2 Maximum Flow Problem

Problem of maximizing the flow of a material through a 
transportation network (e.g., pipeline system, communications 
or transportation networks) 

Formally represented by a connected weighted digraph with n
vertices numbered from 1 to n with the following properties:

• contains exactly one vertex with no entering edges, called 
the source (numbered 1)

• contains exactly one vertex with no leaving edges, called 
the sink (numbered n)

• has positive integer weight uij on each directed edge (i.j), 
called the edge capacity,  indicating the upper bound on 
the amount of the material that can be sent from i to j
through this edge
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Example of Flow Network

1 2 3

4

5

6
2 2

3
1

5

3
4

Source

Sink
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Definition of a Flow

A flow is an assignment of real numbers xij to edges (i,j) of a 

given network that satisfy the following:

flow-conservation requirements

The total amount of material entering an intermediate

vertex must be equal to the total amount of the material 

leaving the vertex

capacity constraints

0 ≤ xij ≤ uij for every edge (i,j)  E

∑  xji =   ∑  xij     for i = 2,3,…, n-1

j: (j,i) є E       j: (i,j) є E
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Flow value and Maximum Flow Problem

Since no material can be lost or added to by going through 

intermediate vertices of the network, the total amount of the 

material leaving the source must end up at the sink:

∑  x1j =    ∑   xjn

The value of the flow is defined as the total outflow from the 

source (= the total inflow into the sink).

The maximum flow problem is to find a flow of the largest 

value (maximum flow) for a given network.

j: (1,j) є E          j: (j,n) є E
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Maximum-Flow Problem as LP problem

Maximize   v =   ∑  x1j

j: (1,j)  E

subject to

∑ xji - ∑ xij  =  0 for i = 2, 3,…,n-1
j: (j,i)  E     j: (i,j)  E

0 ≤ xij ≤ uij for every edge (i,j)  E
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Augmenting Path (Ford-Fulkerson) Method

Start with the zero flow (xij = 0 for every edge)

On each iteration, try to find a flow-augmenting path from 

source to sink, which a path along which some additional 

flow can be sent

If a flow-augmenting path is found, adjust the flow along 

the edges of this path to get a flow of increased value and 

try again

If no flow-augmenting path is found, the current flow is 

maximum
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Example 1

1 2 3

4

5

6
0/2 0/2

0/3
0/1

0/5

0/3 0/4

Augmenting path:

1→2 →3 →6

xij/uij
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1 2 3

4

5

6
2/2 2/2

0/3
0/1

2/5

0/3 0/4

Augmenting path:

1 →4 →3←2 →5 →6

Example 1 (cont.)
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1 2 3

4

5

6
2/2 2/2

1/3
1/1

1/5

1/3 1/4

max flow value = 3

Example 1 (maximum flow)
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Finding a flow-augmenting path

To find a flow-augmenting path for a flow x, consider paths from 
source to sink in the underlying undirected graph in which any 
two consecutive vertices i,j are either:

• connected by a directed edge (i to j) with some positive 
unused capacity rij = uij – xij

– known as forward edge ( → )

OR

• connected by a directed edge (j to i) with positive flow xji

– known as backward edge ( ← )

If a flow-augmenting path is found, the current flow can be 
increased by r units by increasing xij  by r on each forward edge 
and decreasing xji by r on each backward edge, where

r  = min {rij on all forward edges, xji on all backward edges}
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Finding a flow-augmenting path (cont.)

Assuming the edge capacities are integers, r is a positive 

integer

On each iteration, the flow value increases by at least 1

Maximum value is bounded by the sum of the capacities of 

the edges leaving the source; hence the augmenting-path 

method has to stop after a finite number of iterations

The final flow is always maximum, its value doesn’t depend 

on a sequence of augmenting paths used
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Performance degeneration of the method

The augmenting-path method doesn’t prescribe a specific 

way for generating flow-augmenting paths

Selecting a bad sequence of augmenting paths could impact 

the method’s efficiency

Example 2

4

2

1 3

0/U 0/U

0/1

0/U0/U

U = large positive integer
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Example 2 (cont.)

4

2

1 3

U/U U/U

0/1

U/UU/U

4

2

1 3

0/U 0/U

0/1

0/U0/U
4

2

1 3

1/U 0/U

1/1

1/U0/U

4

2

1 3

1/U 1/U

0/1

1/U1/U

1→2→4→3

1→4←2→3

V=1

V=2

V=2U

● ● ●

Requires 2U iterations to reach 

maximum flow of value 2U
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Shortest-Augmenting-Path Algorithm

Generate augmenting path with the least number of edges by 

BFS as follows.

Starting at the source, perform BFS traversal  by marking new 

(unlabeled) vertices with two labels:

• first label – indicates the amount of additional flow that 

can be brought from the source to the vertex being labeled

• second label – indicates the vertex from which the vertex 

being labeled was reached, with “+” or  “–”  added to the 

second label to indicate whether the vertex was reached via 

a forward or backward edge
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Vertex labeling 

The source is always labeled with ∞,-

All other vertices are labeled as follows:

• If unlabeled vertex j is connected to the front vertex i of 

the traversal queue by a directed edge from i to j with 

positive unused capacity rij = uij –xij (forward edge), 

vertex j is labeled with lj,i
+, where lj = min{li, rij}

• If unlabeled vertex j is connected to the front vertex i of 

the traversal queue by a directed edge from j to i with 

positive flow xji (backward edge), vertex j is labeled lj,i
-, 

where lj = min{li, xji}
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Vertex labeling (cont.)

If the sink ends up being labeled, the current flow can be 
augmented by the amount indicated by the sink’s first label

The augmentation of the current flow is performed along the 
augmenting path traced by following the vertex second labels 
from sink to source; the current flow quantities are increased 
on the forward edges and decreased on the backward edges 
of this path

If the sink remains unlabeled after the traversal queue 
becomes empty, the algorithm returns the current flow as 
maximum and stops
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Example: Shortest-Augmenting-Path Algorithm

Queue: 1 2 4 3 5 6
↑ ↑ ↑ ↑

Augment the flow by 2 (the sink’s first 

label) along the path 1→2→3→6

1 2 3

4

5

6
0/2 0/2

0/3 0/1

0/5

0/3 0/4

1 2 3

4

5

6
0/2 0/2

0/3 0/1

0/5

0/3 0/4

∞,- 2,1+

2,2+

2,3+

2,2+

3,1+
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1 2 3

4

5

6
2/2 2/2

0/3 0/1

2/5

0/3 0/4

1 2 3

4

5

6
2/2 2/2

0/3 0/1

2/5

0/3 0/4

∞,- 1,3-

1,2+

1,5+

1,4+

3,1+

Augment the flow by 1 (the sink’s first 

label) along the path 1→4→3←2→5→6

Queue: 1 4 3 2 5 6
↑ ↑ ↑ ↑ ↑

Example (cont.)
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1 2 3

4

5

6
2/2 2/2

1/3 1/1

1/5

1/3 1/4

1 2 3

4

5

6
2/2 2/2

1/3 1/1

1/5

1/3 1/4

∞,-

2,1+

No augmenting path (the sink is unlabeled) 

the current flow is maximum

Queue: 1 4
↑ ↑

Example (cont.)
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Time Efficiency

The number of augmenting paths needed by the shortest-
augmenting-path algorithm never exceeds nm/2, where n
and m are the number of vertices and edges, respectively

Since the time required to find shortest augmenting path by 
breadth-first search is in O(n+m)=O(m) for networks 
represented by their adjacency lists, the time efficiency of 
the shortest-augmenting-path algorithm is in O(nm2) for 
this representation

More efficient algorithms have been found that can run in 
close to O(nm) time, but these algorithms don’t fall into the 
iterative-improvement paradigm
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Definition of a Cut

Let X be a set of vertices in a network that includes its source but 
does not include its sink, and let X, the complement of X, be the 
rest of the vertices including the sink.  The cut induced by this 
partition of the vertices is the set of all the edges with a tail in X 
and a head in X.

Capacity of a cut is defined as the sum of capacities of the edges 
that compose the cut.

We’ll  denote a cut and its capacity by C(X,X) and c(X,X)

Note that if all the edges of a cut were deleted from the 

network, there would be no directed path from source to sink

Minimum cut  is a cut of the smallest capacity in a given 
network
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Examples of network cuts

If X = {1} and X = {2,3,4,5,6}, C(X,X) = {(1,2), (1,4)}, c = 5 

If X ={1,2,3,4,5} and X = {6}, C(X,X) = {(3,6), (5,6)},  c = 6 

If X = {1,2,4} and X ={3,5,6}, C(X,X) = {(2,3), (2,5), (4,3)}, c = 9

1 2 3

4

5

6
2 2

3
1

5

3
4
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The value of maximum flow in a network is equal to the 

capacity of its minimum cut

The shortest augmenting path algorithm yields both a 

maximum flow and a minimum cut:

• maximum flow is the final flow produced by the 

algorithm

• minimum cut is formed by all the edges from the labeled 

vertices to unlabeled vertices on the last iteration of the 

algorithm

• all the edges from the labeled to unlabeled vertices are 

full, i.e., their flow amounts are equal to the edge 

capacities, while all the edges from the unlabeled to 

labeled vertices, if any, have zero flow amounts on them

Max-Flow Min-Cut Theorem
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10.3 Bipartite Graphs

4 5

109876

1 2 3V

U

Bipartite graph: a graph whose vertices can be partitioned into 

two disjoint sets V and U, not necessarily of the same size, so 

that every edge connects a vertex in V to a vertex in U

A graph is bipartite if and only if it does not have a cycle of an 

odd length
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Bipartite Graphs (cont.)

4 5

109876

1 2 3V

U

A bipartite graph is 2-colorable: the vertices can be colored 

in two colors so that every edge has its vertices colored 

differently
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Matching in a Graph

4 5

109876

1 2 3V

U

A matching in a graph is a subset of its edges with the property 

that no two edges share a vertex

a matching 

in this graph

M = {(4,8), (5,9)}

A maximum (or maximum cardinality) matching is a matching 

with the largest number of edges

• always exists

• not always unique
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Free Vertices and Maximum Matching

4 5

109876

1 2 3V

U

A matching 

in this graph (M)

A matched

vertex

A free

vertex

For a given matching M, a vertex is called free (or unmatched) if  

it is not an endpoint of any edge in M; otherwise, a vertex is said 

to be matched

• If every vertex is matched, then M is a maximum matching

• If there are unmatched or free vertices, then M may be able to be improved

• We can immediately increase a matching by adding an edge connecting two

free vertices (e.g., (1,6) above)
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Augmenting Paths and Augmentation

4 5

1098

3V

U

An augmenting path for a matching M is a path from a free vertex 
in V to a free vertex in U whose edges alternate between edges 
not in M and edges in M
The length of an augmenting path is always odd

Adding to M the odd numbered path edges and deleting from it the even 
numbered path edges increases the matching size by 1 (augmentation)

One-edge path between two free vertices is special case of augmenting path

Augmentation along path 2,6,1,7

1 2

76

4 5

1098

3V

U

1 2

76
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Augmenting Paths (another example)

109876

1 2 3V

U

Augmentation along

3, 8, 4, 9, 5, 10

4 5

109876

1 2 3V

U

4 5

• Matching on the right is maximum (perfect matching)

• Theorem A matching M is maximum if and only if there exists

no augmenting path with respect to M
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Augmenting Path Method (template) 

Start with some initial matching 

• e.g., the empty set

Find an augmenting path and augment the current 

matching along that path

• e.g., using breadth-first search like method

When no augmenting path can be found, terminate and 

return the last matching, which is maximum
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BFS-based Augmenting Path Algorithm

Initialize queue Q with all free vertices in one of the sets (say V)

While Q is not empty, delete front vertex w and label every 
unlabeled vertex u adjacent to w as follows:

Case 1 (w  is in V)
If u is free, augment the matching along the path ending at u 
by moving backwards until a free vertex in V is reached.  
After that, erase all labels and reinitialize Q with all the 
vertices in V that are still free
If u is matched (not with w), label u with w and enqueue u

Case 2 (w is in U)  Label its matching mate v  with w and 
enqueue v

After Q becomes empty, return the last matching, which is 
maximum
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Example (revisited)

4 5

109876

1 2 3V

U

4 5

109876

1 2 3V

U

Queue: 1 2 3

1

Queue: 1 2 3 Augment 

from 6

Initial Graph Resulting Graph

Each vertex is labeled with the vertex it was reached from.  Queue deletions are 

indicated by arrows.  The free vertex found in U is shaded and labeled for clarity; 

the new matching obtained by the augmentation is shown on the next slide.
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Example (cont.)

4 5

109876

1 2 3V

U

4 5

109876

1 2 3V

U

Queue: 2 3

2

Queue: 2 3 6 8 1 4 Augment 

from 7

Initial Graph Resulting Graph

3

86

1
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Example (cont.)

4 5

109876

1 2 3V

U

4 5

109876

1 2 3V

U

Queue: 3 Queue: 3 6 8 2 4 9 Augment 

from 10

Initial Graph Resulting Graph
8

3 3

6

4 4
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Example: maximum matching found

This matching is maximum since there are no remaining 
free vertices in V (the queue is empty)

Note that this matching differs from the maximum 
matching found earlier

maximum

matching

4 5

109876

1 2 3V

U
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Notes on Maximum Matching Algorithm

Each iteration (except the last) matches two free vertices (one 
each from V and U).  Therefore, the number of iterations 
cannot exceed n/2 + 1, where n is the  number of vertices in 
the graph.  The time spent on each iteration is in O(n+m), 
where m is the number of edges in the graph.  Hence, the time 
efficiency is in O(n(n+m)) 

This can be improved to O(sqrt(n)(n+m)) by combining 
multiple iterations to maximize the number of edges added to 
matching M in each search

Finding a maximum matching in an arbitrary graph is much 
more difficult, but the problem was solved in 1965 by Jack 
Edmonds



A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson 

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 53

Conversion to Max-Flow Problem

Add a source and a sink, direct edges (with unit capacity) 
from the source to the vertices of V and from the vertices 
of U to the sink 

Direct all edges from V to U with unit capacity

V

U

s

t

4 5

10987

1 2 3

6

1

1

1 1 1 1
1

1

1

1

1
1 1

1
1

1 1 1 1 1
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10.4 Stable Marriage Problem

There is a set Y = {m1,…,mn} of n men and a set X = {w1,…,wn} of 
n women.  Each man has a ranking list of the women, and 
each woman has a ranking list of the men (with no ties in these 
lists). 

A marriage matching M is a set of n pairs (mi, wj).

A pair (m, w) is said to be a blocking pair for matching M if man 
m and woman w are not matched in M but prefer each other 
to their mates in M.

A marriage matching M is called stable if there is no blocking 
pair for it; otherwise, it’s called unstable.

The stable marriage problem is to find a stable marriage 
matching for men’s and women’s given preferences.
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Instance of the Stable Marriage Problem

An instance of the stable marriage problem can be specified 
either by two sets of preference lists or by a ranking matrix, as in 
the example below.

men’s preferences women’s preferences

1st 2nd 3rd 1st 2nd 3rd

Bob: Lea  Ann  Sue Ann: Jim  Tom  Bob

Jim:  Lea  Sue  Ann               Lea:  Tom  Bob  Jim

Tom:  Sue Lea  Ann                Sue:  Jim  Tom  Bob

ranking matrix

Ann  Lea  Sue

Bob  2,3   1,2   3,3

Jim  3,1  1,3   2,1

Tom  3,2   2,1   1,2

{(Bob, Ann)  (Jim, Lea)  (Tom, Sue)} is unstable

{(Bob, Ann)  (Jim, Sue)  (Tom, Lea)} is stable
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Stable Marriage Algorithm (Gale-Shapley)

Step 0   Start with all the men and women being free

Step 1   While there are free men, arbitrarily select one of them 
and do the following:
Proposal  The selected free man m proposes to w, the 
next woman on his preference list

Response If w is free, she accepts the proposal to be 
matched with m.  If she is not free, she compares m with 
her current mate.  If she prefers m to him, she accepts 
m’s proposal, making her former mate free; otherwise, 
she simply rejects m’s proposal, leaving m free

Step 2   Return the set of n matched pairs
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Example

Free men:

Bob, Jim, Tom

Ann Lea Sue

Bob 2,3 1,2 3,3

Jim 3,1 1,3 2,1

Tom 3,2 2,1 1,2

Bob proposed to Lea

Lea accepted

Ann Lea Sue

Bob 2,3 1,2 3,3

Jim 3,1 1,3 2,1

Tom 3,2 2,1 1,2

Jim proposed to Lea

Lea rejected

Free men:

Jim, Tom
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Example (cont.)

Free men:

Jim, Tom

Ann Lea Sue

Bob 2,3 1,2 3,3

Jim 3,1 1,3 2,1

Tom 3,2 2,1 1,2

Jim proposed to Sue

Sue accepted

Ann Lea Sue

Bob 2,3 1,2 3,3

Jim 3,1 1,3 2,1

Tom 3,2 2,1 1,2

Tom proposed to Sue

Sue rejected

Free men:

Tom



A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson 

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 59

Example (cont.)

Free men:

Tom

Ann Lea Sue

Bob 2,3 1,2 3,3

Jim 3,1 1,3 2,1

Tom 3,2 2,1 1,2

Tom proposed to Lea

Lea replaced Bob 

with Tom

Ann Lea Sue

Bob 2,3 1,2 3,3

Jim 3,1 1,3 2,1

Tom 3,2 2,1 1,2

Bob proposed to Ann

Ann accepted

Free men:

Bob
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Analysis of the Gale-Shapley Algorithm

The algorithm terminates after no more than n2 iterations with
a stable marriage output

The stable matching produced by the algorithm is always 
man-optimal: each man gets the highest rank woman on his list 
under any stable marriage.  One can obtain the woman-
optimal matching by making women propose to men

A man (woman) optimal matching is unique for a given set of 
participant preferences

The stable marriage problem has practical applications such 
as matching medical-school graduates with hospitals for 
residency training
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