Chapter 9: Greedy Technique

Constructs a solution to an optimizution problem piece by piece through a sequence of choices that are:

- Feasible: i.e, it has to satisfy the problem's constraints
- locally optimal: i.e., it has to be the best local choice among all feasible choices available on that step
- Irrevocable: i.e., once made, it cannot be changed on subsequent steps of the algorithm

For some problems, yields an optimal solution for every instance. For most, does not but can be useful for fast approximations.

Applications of the Greedy Strategy

- Optimal solutions:
- change making for "normal" coin denominations
- minimum spanning tree (MSI')
- single-source shortest paths
- simple scheduling problems
- Huffiman codes
- Approximations:
- traveling salesman problem (ISP)
- knapsack problem
- other combinatorial optimivation problems

Change-Making Problem

Given unlimited amounts of coins of denominations $d_{1}>\ldots>d_{m}$, give change for amount n with the least number of coins

Example: $d_{1}=25 \mathrm{c}, d_{2}=10 \mathrm{c}, d_{3}=5 \mathrm{c}, d_{4}=1 \mathrm{c}$ and $n=48 \mathrm{c}$

Greedy solution:

Greedy solution is

- optimal for any amount and "normal" set of denominations
- may not be optimal for arbitrary coin denominations

9.1 Minimum Spanning Tree (MST)

- Spanning tree of a connected graph G: a connected acyclic subgraph of G that includes all of \boldsymbol{G} 's vertices
- Minimum spanning tree of a weighted, connected graph G : a spanning tree of \boldsymbol{G} of minimum total weight

Example:

A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 902012 Pearson

Prim's MIST algorithm

- Start with tree T_{1} consisting of one (any) vertex and "grow" tree one vertex at a time to produce MST through a series of expanding subtrees $\mathrm{T}_{1}, \mathrm{~T}_{2}, \ldots, \mathrm{~T}_{n}$
- On each iteration, construct T_{i+1} from T_{i} by adding vertex not in T_{i} that is closest to those already in T_{i} (this is a "greedy" step!')
- Stop when all vertices are included

Pseudocode

ALGORITHM $\operatorname{Prim}(G)$

//Prim's algorithm for constructing a minimum spanning tree
//Input: A weighted connected graph $G=\langle V, E\rangle$
//Output: E_{T}, the set of edges composing a minimum spanning tree of G $V_{T} \leftarrow\left\{v_{0}\right\} \quad / /$ the set of tree vertices can be initialized with any vertex
$E_{T} \leftarrow \varnothing$
for $i \leftarrow 1$ to $|V|-1$ do
find a minimum-weight edge $e^{*}=\left(v^{*}, u^{*}\right)$ among all the edges (v, u) such that v is in V_{T} and u is in $V-V_{T}$
$V_{T} \leftarrow V_{T} \cup\left\{u^{*}\right\}$
$E_{T} \leftarrow E_{T} \cup\left\{e^{*}\right\}$
return E_{T}

Example

Tree vertices

Remaining vertices
Illustration

$$
\begin{array}{ll}
\mathrm{a}(-,-) & \mathbf{b}(\mathbf{a}, \mathbf{3}) \mathrm{c}(-, \infty) \mathrm{d}(-, \infty) \\
& \mathrm{e}(\mathrm{a}, 6) \mathrm{f}(\mathrm{a}, 5)
\end{array}
$$

A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 9 @2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Notes about Prim's algorithm

- Proof by induction that this construction actually yields MST
- Each of the subtrees $T_{i}, i=0, \ldots, n-1$, generated by Prim's algorithm is a part (i,e, a subgraph) of some minimum spanning tree.
- Needs priority queue for locating closest fringe vertex
- Efficiency
- O(n^{2}) for weight matrix representation of graph and array implementation of priority queue
- O($m \log n)$ for adjacency list representation of graph with n vertices and m edges and min-heap implementation of priority queue

9.2 Another greedy algorithm for MST: Kruskal's

- Sort the edges in nondecreasing order of lengths
- "Grow" tree one edge at a time to produce MST through a series of expanding forests $F_{1}, F_{2}, \ldots, F_{n-1}$
- On each iteration, add the next edge on the sorted list unless this would create a cycle. (If it would, skip the edge.)
- Example

[^0]Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Pseudocode

ALGORITHM $\operatorname{Kruskal(G)}$

//Kruskal's algorithm for constructing a minimum spanning tree
$/ /$ Input: A weighted connected graph $G=\langle V, E\rangle$
//Output: E_{T}, the set of edges composing a minimum spanning tree of G sort E in nondecreasing order of the edge weights $w\left(e_{i_{1}}\right) \leq \cdots \leq w\left(e_{i_{|E|}}\right)$ $E_{T} \leftarrow \varnothing$; ecounter $\leftarrow 0 \quad$ //initialize the set of tree edges and its size $k \leftarrow 0 \quad$ //initialize the number of processed edges
while ecounter $<|V|-1$ do
$k \leftarrow k+1$
if $E_{T} \cup\left\{e_{i_{k}}\right\}$ is acyclic

$$
E_{T} \leftarrow E_{T} \cup\left\{e_{i_{k}}\right\} ; \quad \text { ecounter } \leftarrow \text { ecounter }+1
$$

return E_{T}

Example

Tree edges
Sorted list of edges
Illustration

A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 9 @2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

- Algorithm looks easier than Prim's but is harder to implement (checking for cycles!)
- Cycle checking: a cycle is created ifi added edge connects vertices in the same connected component
- Union-find algorithms - see section 9.2

9.3 Shortest paths - Dijkstra's algorithm

Single Source Shortest Paths Problem: Given a weighted

 connected graph \mathbb{G}, find shortest paths from source vertex s to each of the other verticesDitkstra's algorithm: Similar to Prim's MST algorithm, with a dififerent way of computing numerical labels: Among vertices not already in the tree, it finds vertex u with the smallest sum

$$
a_{\nu}+w(\nu, \mu)
$$

where
ν is a vertex for which shortest path has been already found on preceding iterations (such vertices form a tree)
d_{v} is the length of the shortest path from source to ν $w(v, u)$ is the length (weight) of edge from ν to u
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 902012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

ALGORITHM $\operatorname{Dijkstra(G,s)}$

//Dijkstra's algorithm for single-source shortest paths
//Input: A weighted connected graph $G=\langle V, E\rangle$ with nonnegative weights
// and its vertex s
//Output: The length d_{v} of a shortest path from s to v
$/ / \quad$ and its penultimate vertex p_{v} for every vertex v in V
Initialize (Q) //initialize priority queue to empty
for every vertex v in V
$d_{v} \leftarrow \infty ; \quad p_{v} \leftarrow$ null
$\operatorname{Insert}\left(Q, v, d_{v}\right) \quad / /$ initialize vertex priority in the priority queue
$d_{s} \leftarrow 0$; $\quad \operatorname{Decrease}\left(Q, s, d_{s}\right) \quad$ //update priority of s with d_{s}
$V_{T} \leftarrow \varnothing$
for $i \leftarrow 0$ to $|V|-1$ do
$u^{*} \leftarrow \operatorname{DeleteMin}(Q) \quad / /$ delete the minimum priority element
$V_{T} \leftarrow V_{T} \cup\left\{u^{*}\right\}$
for every vertex u in $V-V_{T}$ that is adjacent to u^{*} do

$$
\begin{aligned}
& \text { if } d_{u^{*}}+w\left(u^{*}, u\right)<d_{u} \\
& \quad d_{u} \leftarrow d_{u^{*}}+w\left(u^{*}, u\right) ; \quad p_{u} \leftarrow u^{*} \\
& \quad \text { Decrease }\left(Q, u, d_{u}\right)
\end{aligned}
$$

Tree vertices Remaining vertices
$\mathrm{a}(-, 0)$ $\underline{b(a, 3)} \mathrm{c}(-, \infty) \mathrm{d}(\mathrm{a}, 7) \mathrm{e}(-, \infty)$

$b(a, 3)$

$$
c(b, 3+4) \quad \mathrm{d}(b, 3+2) \mathrm{e}(-, \infty)
$$

d(b,5)
$c(b, 7) \quad e(d, 5+4)$

$\mathrm{c}(\mathrm{b}, 7)$
$\mathrm{e}(\mathrm{d}, 9)$

e(d,9)
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 902012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Notes on Dijkstra's algorithm

- Doesn't work for graphs with negative weights
- Applicable to both undirected and directed graphs
- Efficiency
- $O\left(\mid V^{2}\right)$ for graphs represented by weight matrix and array implementation of priority queue
- $O(|||\log | V|)$ for graphs represented by adj. lists and min-heap implementation of priority queue
- Don't mix up Dijkstra's algorithm with Prim's algorithm!
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 9 O2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

9.4 Coding Problem

Coding: assignment of bit strings to alphabet characters

Codewords: bit strings assigned for characters of alphabet

Two types of codes:

- fired-length encoding (e.g., ASCII)
- variable-length encoding (e,g., Morse code)

Prefiar-free codes: no codeword is a prefix of another codeword

Problem: If frequencies of the character occurrences are
known, what is the best binary prefix-firee code?

A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 9 @2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Huffiman codes

- Any binary tree with edges labeled with 0 's and 1's yields a prefix-firee code of characters assigned to its leaves
- Optimal binary tree minimiving the expected (weighted average) length of a codeword can be constructed as follows

Hrufiman's alsorithm

Initialize n one-node trees with alphabet characters and the tree weights with their frequencies.

Repeat the following step n - 1 times:
Join two binary trees with smallest weights into one (as left and right subtrees) and make its weight equal the sum of the weights of the two trees. Mark edges leading to left and right subtrees with 0's and 1's, respectively.
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 902012 Pearson

Example

$\begin{array}{llllll}\text { character } & A & B & C & D & = \\ \text { frequency } & 0.35 & 0.1 & 0.2 & 0.2 & 0.15\end{array}$
codeword $11 \quad 1000001101$
average bits per character: 2.25
for fixed-length encoding: 3
compression ratio: $(3-2.25) / 3 * 100 \%=25 \%$

A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 9 O2012 Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

[^0]: A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 9 @2012 Pearson

