
A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 1

Chapter 7: Space-for-time tradeoffs

Two varieties of space-for-time algorithms:

input enhancement — preprocess the input (or its part) to

store some info to be used later in solving the problem

• counting methods for sorting

• string searching algorithms

prestructuring — preprocess the input to make accessing its

elements easier

• hashing

• indexing schemes (e.g., B-trees)

7.1 Sorting by Counting

Comparison-counting Sort

• for each element of a list to be sorted, count the total number of

elements smaller than this element and record the results in a table

Example of sorting by comparison counting

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2

Seudocode of Comparison-counting Sort

time efficiency (n2): is the same as the selection sort

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 3

Sorting by distribution counting

EXAMPLE:

• Consider sorting the array: 13, 11, 12, 13, 12, 12

• Compute frequencies and distribution:

Distribution value indicates

position of last occurrence of

the array value in the sorted

array.

• Process the array from right to left

put each array value in

the position indicated by

distribution value and

reduce the distribution

value by 1

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 4

Pseudocode of distribution counting

Time efficiency: (n)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 5

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 6

7.2 Review: String searching by brute force

pattern: a string of m characters to search for

text: a (long) string of n characters to search in

Brute force algorithm

Step 1 Align pattern at beginning of text

Step 2 Moving from left to right, compare each character of

pattern to the corresponding character in text until

either all characters are found to match (successful

search) or a mismatch is detected

Step 3 While a mismatch is detected and the text is not yet

exhausted, realign pattern one position to the right and

repeat Step 2

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 7

String searching by preprocessing

Several string searching algorithms are based on the input

enhancement idea of preprocessing the pattern

Knuth-Morris-Pratt (KMP) algorithm preprocesses
pattern left to right to get useful information for later
searching

Boyer -Moore algorithm preprocesses pattern right to left
and store information into two tables

Horspool’s algorithm simplifies the Boyer-Moore algorithm
by using just one table

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 8

Horspool’s Algorithm

A simplified version of Boyer-Moore algorithm:

• preprocesses pattern to generate a shift table that

determines how much to shift the pattern when a

mismatch occurs

• always makes a shift based on the text’s character c

aligned with the last character in the pattern according

to the shift table’s entry for c

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9

How far to shift?

Look at first (rightmost) character in text that was compared:

The character is not in the pattern

.....c...................... (c not in pattern)

BAOBAB

The character is in the pattern (but not the rightmost)

.....O...................... (O occurs once in pattern)

BAOBAB

.....A...................... (A occurs twice in pattern)

BAOBAB

The rightmost characters do match

.....B......................

BAOBAB

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 10

Shift table

Shift sizes can be precomputed by the formula

distance from c’s rightmost occurrence in pattern

t(c) = among its first m-1 characters to its right end

pattern’s length m, otherwise

by scanning pattern before search begins and stored in a

table called shift table

Shift table is indexed by text and pattern alphabet

Eg, for BAOBAB:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

1 2 6 6 6 6 6 6 6 6 6 6 6 6 3 6 6 6 6 6 6 6 6 6 6 6

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 11

Example of Horspool’s alg. application

BARD LOVED BANANAS

BAOBAB

BAOBAB

BAOBAB

BAOBAB (unsuccessful search)

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

1 2 6 6 6 6 6 6 6 6 6 6 6 6 3 6 6 6 6 6 6 6 6 6 6 6

_

6

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12

Boyer-Moore algorithm

Based on same two ideas:

• comparing pattern characters to text from right to left

• precomputing shift sizes in two tables

– bad-symbol table indicates how much to shift based on

text’s character causing a mismatch

– good-suffix table indicates how much to shift based on

matched part (suffix) of the pattern

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13

Bad-symbol shift in Boyer-Moore algorithm

If the rightmost character of the pattern doesn’t match, BM

algorithm acts as Horspool’s

If the rightmost character of the pattern does match, BM

compares preceding characters right to left until either all

pattern’s characters match or a mismatch on text’s

character c is encountered after k > 0 matches

text

pattern

bad-symbol shift d1 = max{t1(c) - k, 1}, where t1(c) is pre-

computed by Horspool’s algorithm

c

k matches

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 14

Good-suffix shift in Boyer-Moore algorithm

Good-suffix shift d2 is applied after 0 < k < m last characters

were matched

d2(k) = the distance between matched suffix of size k and its

rightmost occurrence in the pattern that is not preceded by

the same character as the suffix

Example: CABABA d2(1) = 2

If there is no such occurrence, match the longest part of the

k-character suffix with corresponding prefix;

if there are no such suffix-prefix matches, d2 (k) = m

Example: WOWWOW d2(2) = 3, d2(3) = 3, d2(4) = 5, d2(5) = 5

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 15

Good-suffix shift in the Boyer-Moore alg. (cont.)

After matching successfully 0 < k < m characters, the algorithm

shifts the pattern right by

d = max {d1, d2}

where d1 = max{t1(c) - k, 1} is bad-symbol shift

d2(k) is good-suffix shift

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 16

Boyer-Moore Algorithm (cont.)

Step 1 Fill in the bad-symbol shift table

Step 2 Fill in the good-suffix shift table

Step 3 Align the pattern against the beginning of the text

Step 4 Repeat until a matching substring is found or text ends:

Compare the corresponding characters right to left.

If no characters match, retrieve entry t1(c) from the
bad-symbol table for the text’s character c causing the
mismatch and shift the pattern to the right by t1(c).
If 0 < k < m characters are matched, retrieve entry t1(c)
from the bad-symbol table for the text’s character c
causing the mismatch and entry d2(k) from the good-
suffix table and shift the pattern to the right by

d = max {d1, d2}
where d1 = max{t1(c) - k, 1}.

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 17

Example of Boyer-Moore alg. application

B E S S _ K N E W _ A B O U T _ B A O B A B S

B A O B A B

d1 = t1(K) = 6 B A O B A B

d1 = t1(_)-2 = 4

d2(2) = 5

B A O B A B

d1 = t1(_)-1 = 5

d2(1) = 2

B A O B A B (success)

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

1 2 6 6 6 6 6 6 6 6 6 6 6 6 3 6 6 6 6 6 6 6 6 6 6 6

_

6

k pattern d2

1 BAOBAB 2

2 BAOBAB 5

3 BAOBAB 5

4 BAOBAB 5

5 BAOBAB 5

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 18

Boyer-Moore example from their paper

Find pattern AT_THAT in

WHICH_FINALLY_HALTS. _ _ AT_THAT

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 19

7.3 Hashing

A very efficient method for implementing a
dictionary, i.e., a set with the operations:

– find

– insert

– delete

Based on representation-change and space-for-time
tradeoff ideas

Important applications:

– symbol tables

– databases (extendible hashing)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 20

Hash tables and hash functions

The idea of hashing is to map keys of a given file of size n into

a table of size m, called the hash table, by using a predefined

function, called the hash function,

h: K → location (cell) in the hash table

Example: student records, key = SSN. Hash function:

h(K) = K mod m where m is some integer (typically, prime)

If m = 1000, where is record with SSN= 314159265 stored?

Generally, a hash function should:

• be easy to compute

• distribute keys about evenly throughout the hash table

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 21

Collisions

If h(K1) = h(K2), there is a collision

Good hash functions result in fewer collisions but some

collisions should be expected (birthday paradox)

Two principal hashing schemes handle collisions differently:

• Open hashing

– each cell is a header of linked list of all keys hashed to it

• Closed hashing

– one key per cell

– in case of collision, finds another cell by

– linear probing: use next free bucket

– double hashing: use second hash function to compute increment

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 22

Open hashing (Separate chaining)

Keys are stored in linked lists outside a hash table whose

elements serve as the lists’ headers.

Example: A, FOOL, AND, HIS, MONEY, ARE, SOON, PARTED

h(K) = sum of K ‘s letters’ positions in the alphabet MOD 13

Key A FOOL AND HIS MONEY ARE SOON PARTED

h(K) 1 9 6 10 7 11 11 12

A FOOLAND HISMONEY ARE PARTED

SOON

1211109876543210

Search for KID

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 23

Open hashing (cont.)

If hash function distributes keys uniformly, average length of

linked list will be α = n/m. This ratio is called load factor.

Average number of probes in successful, S, and unsuccessful

searches, U:

S 1+α/2, U = α

Load α is typically kept small (ideally, about 1)

Open hashing still works if n > m

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 24

Closed hashing (Open addressing)

Keys are stored inside a hash table.

A

A FOOL

A AND FOOL

A AND FOOL HIS

A AND MONEY FOOL HIS

A AND MONEY FOOL HIS ARE

A AND MONEY FOOL HIS ARE SOON

PARTED A AND MONEY FOOL HIS ARE SOON

Key A FOOL AND HIS MONEY ARE SOON PARTED

h(K) 1 9 6 10 7 11 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 25

Closed hashing (cont.)

Does not work if n > m

Avoids pointers

Deletions are not straightforward

Number of probes to find/insert/delete a key depends on
load factor α = n/m (hash table density) and collision
resolution strategy. For linear probing:

S = (½) (1+ 1/(1- α)) and U = (½) (1+ 1/(1- α)²)

As the table gets filled (α approaches 1), number of probes
in linear probing increases dramatically:

7.4 B-Trees

All data records (or record keys) are stored at the leaves, in

increasing order of the keys

The parental nodes are used for indexing

• Keys are interposed with pointers to children.

• Key left to a pointer all keys in child pointed by the pointer

< key right to the pointer

In addition, a B-tree of order m ≥ 2 must satisfy the

following structural properties:

• The root is either a leaf or has between 2 and m children.

• Each node, except for the root and the leaves, has between m/2 and

m children

• The tree is balanced, i.e., all its leaves are at the same level.

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 26

B-Trees (Cont.)

Example of a B-tree of order 4

Search operation in B-tree

B-tree often used for indexing large data file

• Nodes represent disk pages

• Minimizing the node accesses (minimizing the height) will minimizes

disk accesses.

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 27

B-Trees (Cont.)

For any B-tree of order m with n nodes and height h>0, we

have the following inequality

This gives an upper bound of h

Example: for a file of 100 million records, we have

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 28

	Slide 1: Chapter 7: Space-for-time tradeoffs
	Slide 2: 7.1 Sorting by Counting
	Slide 3: Seudocode of Comparison-counting Sort
	Slide 4: Sorting by distribution counting
	Slide 5: Pseudocode of distribution counting
	Slide 6: 7.2 Review: String searching by brute force
	Slide 7: String searching by preprocessing
	Slide 8: Horspool’s Algorithm
	Slide 9: How far to shift?
	Slide 10: Shift table
	Slide 11: Example of Horspool’s alg. application
	Slide 12: Boyer-Moore algorithm
	Slide 13: Bad-symbol shift in Boyer-Moore algorithm
	Slide 14: Good-suffix shift in Boyer-Moore algorithm
	Slide 15: Good-suffix shift in the Boyer-Moore alg. (cont.)
	Slide 16: Boyer-Moore Algorithm (cont.)
	Slide 17: Example of Boyer-Moore alg. application
	Slide 18: Boyer-Moore example from their paper
	Slide 19: 7.3 Hashing
	Slide 20: Hash tables and hash functions
	Slide 21: Collisions
	Slide 22: Open hashing (Separate chaining)
	Slide 23: Open hashing (cont.)
	Slide 24: Closed hashing (Open addressing)
	Slide 25: Closed hashing (cont.)
	Slide 26: 7.4 B-Trees
	Slide 27: B-Trees (Cont.)
	Slide 28: B-Trees (Cont.)

