Chapter 7: Space-for-time tradeofis

Two varieties of space-for-time algorithms:

- input enhancement - preprocess the input (or its part) to store some info to be used later in solving the problem
- counting methods for sorting
- string searching algorithms
- prestructuring - preprocess the input to make accessing its elements easier
- hashing
- indexing schemes (e.g., B-trees)
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 7 O2012 Pearson

7.1 Sorting by Counting

- Comparison-counting Sort
- for each element of a list to be sorted, count the total number of elements smaller than this element and record the results in a table
- Example of sorting by comparison counting

Array A[0..5]		62	31	84	96	19	47
Initially	Count []	0	0	0	0	0	0
After pass $i=0$	Count []	3	0	1	1	0	0
After pass $i=1$	Count []		1	2	2	0	1
After pass $i=2$	Count []			4	3	0	1
After pass $i=3$	Count []				5	0	1
After pass $i=4$	Count []					0	2
Final state	Count []	3	1	4	5	0	2
Array S[0..5]		19	31	47	62	84	96

A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 7 O2012 Pearson

Seudocode of Comparison-counting Sort

ALGORITHM ComparisonCountingSort($A[0 . . n-1]$)
//Sorts an array by comparison counting
//Input: An array $A[0 . . n-1]$ of orderable elements
//Output: Array $S[0 . . n-1]$ of A 's elements sorted in nondecreasing order
for $i \leftarrow 0$ to $n-1$ do Count $[i] \leftarrow 0$
for $i \leftarrow 0$ to $n-2$ do

$$
\text { for } j \leftarrow i+1 \text { to } n-1 \text { do }
$$

if $A[i]<A[j]$
Count $[j] \leftarrow$ Count $[j]+1$
else Count $[i] \leftarrow \operatorname{Count}[i]+1$
for $i \leftarrow 0$ to $n-1$ do $S[\operatorname{Count}[i]] \leftarrow A[i]$
return S

- time effifiency $\Theta\left(n^{2}\right)$: is the same as the selection sort

Sorting by distribution counting

- EXAMIPLE:

- Consider sorting the array: $13,11,12,13,12,12$
- Compute frequencies and distribution:
Distribution value indicates position of last occurrence of the array value in the sorted array.

Array values	11	12	13
Frequencies	1	3	2
Distribution values	1	4	6

- Process the array from right to lefit

put each array value in the position indicated by		$D[0 . .2]$			$S[0 . .5]$					
		1	4	6				12		
	$A[4]=12$	1	3	6			12			
distribution value and	$A[3]=13$	1	2	6						13
reduce the distribution	$A[2]=12$	1	2	5		12				
reduce the distribution	$A[1]=11$	1	1	5	11					
value by 1	$A[0]=13$	0	1	5					13	

A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 7 O2012 Pearson

Pseudocode of distribution counting

ALGORITHM DistributionCountingSort(A[0..n-1], l, u)
//Sorts an array of integers from a limited range by distribution counting $/ /$ Input: An array $A[0 . . n-1]$ of integers between l and $u(l \leq u)$
//Output: Array $S[0 . . n-1]$ of A's elements sorted in nondecreasing order for $j \leftarrow 0$ to $u-l$ do $D[j] \leftarrow 0 \quad$ //initialize frequencies for $i \leftarrow 0$ to $n-1$ do $D[A[i]-l] \leftarrow D[A[i]-l]+1 / /$ compute frequencies for $j \leftarrow 1$ to $u-l$ do $D[j] \leftarrow D[j-1]+D[j] \quad / /$ reuse for distribution for $i \leftarrow n-1$ downto 0 do

$$
\begin{aligned}
& j \leftarrow A[i]-l \\
& S[D[j]-1] \leftarrow A[i] \\
& D[j] \leftarrow D[j]-1
\end{aligned}
$$

return S

- Time efficiency: $\Theta(n)$
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 7 O2012 Pearson

7.2 Review: String searching by brute force

pattern: a string of m characters to search for text: a (long) string of n characters to search in

Brute force algorithm

Step 1 Align pattern at beginning of text
Step 2 Moving from left to right, compare each character of pattern to the corresponding character in text until either all characters are found to match (successfiul search) or a mismatch is detected
Step 3 While a mismatch is detected and the text is not yet exhausted, realign pattern one position to the right and repeat Step 2
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 702012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

String searching by preprocessing

Several string searching algorithms are based on the input enhancement idea of preprocessing the pattern

- Knuth-Morris-Pratt (KMP) algorithm preprocesses pattern lefit to right to get useful information for later searching
- Boyer -Moore algorithm preprocesses pattern right to left and store information into two tables
- Horspool's algorithm simplifies the Boyer-Moore algorithm by using just one table

Horspool's Algorithm

A simplified version of Boyer-Moore algorithm:

- preprocesses pattern to generate a shifit table that determines how much to shift the pattern when a mismatch occurs
- always makes a shift based on the text's character c aligned with the last character in the pattern according to the shift table's entry for c

A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 702012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

How far to shift?

Look at first (rightmost) character in text that was compared:

- The character is not in the pattern
. c. (c not in pattern)
B소OBAAㅗ
- The character is in the pattern (but not the rightmost) O. (O occurs once in pattern) BAA오Aㅗ
. . . . A. (A occurs twice in pattern)
BAAOBAB
- The rightmost characters do match
.....B
B숭B소B
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 7 O2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Shift table

- Shift sizes can be precomputed by the formula
$t(c)=\left\{\begin{array}{r}\text { distance from } c^{\prime} \text { s rightmost occurrence in pattern } \\ \text { among its first } m-1 \text { characters to its right end } \\ \text { pattern's length } m, \text { otherwise }\end{array}\right.$
by scanning pattern before search begins and stored in a table called shift table
- Shifit table is indexed by text and pattern alphabet Eg, for BA오오송

A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y
\mathbf{I}	2	6	6	6	6	6	6	6	6	6	6	6	6	3	6	6	6	6	6	6	6	6	6	6

[^0]
Example of Horspool's alg, application

A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z
$\mathbf{1}$	2	6	6	6	6	6	6	6	6	6	6	6	6	3	6	6	6	6	6	6	6	6	6	6	6

BARD LOVID BANTANAS

B송BAB

BAㅗㅇ옵

B숭오솝

BAABAB (unsuccessful search)

Boyer-Moore algorithm

Based on same two ideas:

- comparing pattern characters to text from right to left
- precomputing shifit sives in two tables
- bad-symbol table indicates how much to shift based on text's character causing a mismatch
- good-suffixi table indicates how much to shift based on matched part (suffix) of the pattern

Bad-symbol shift in Boyer-Moore algorithm

- If the rightmost character of the pattern doesn't match, BMI algorithm acts as Horspool's
- If the rightmost character of the pattern does match, BM compares preceding characters right to left until either all pattern's characters match or a mismatch on text's character \boldsymbol{c} is encountered after $k>0$ matches
text

pattern

- bad-symbol shift $d_{1}=\max \left\{t_{1}(c)-k, 1\right\}$, where $t_{1}(c)$ is precomputed by Horspool's algorithm
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 7 O2012 Pearson

Good-suffix shift in Boyer-Moore algorithm

- Good-sufifix shift d_{2} is applied after $0<k<m$ last characters were matched
- $d_{2}(k)=$ the distance between matched sufiix of sive k and its rightmost occurrence in the pattern that is not preceded by the same character as the suffix

Example: CABABㅗAAㅗ $d_{2}(1)=2$

- If there is no such occurrence, match the longest part of the k-character suffix with corresponding prefix; if there are no such suffix-prefix matches, $d_{2}(k)=m$

Example: 内人ผผOW $d_{2}(2)=3, d_{2}(3)=3, d_{2}(4)=5, d_{2}(5)=5$

Good-suffix shift in the Boyer-Moore alg. (cont.)

After matching successfully $0<k<m$ characters, the algorithm shifts the pattern right by

$$
d=\max \left\{d_{1}, d_{2}\right\}
$$

where $\boldsymbol{d}_{1}=\max \left\{t_{1}(c)-\boldsymbol{k}, 1\right\}$ is bad-symbol shift $d_{2}(k)$ is good-sufifix shifit

Boyer-Moore Algorithm (cont.)

Step 1 Fill in the bad-symbol shift table
Step 2 Fill in the good-suffix shift table
Step 3 Align the pattern against the beginning of the text
Step 4 Repeat until a matching substring is found or text ends: Compare the corresponding characters right to left. If no characters match, retrieve entry $t_{1}(c)$ from the bad-symbol table for the text's character c causing the mismatch and shift the pattern to the right by $t_{1}(c)$. If $0<k<m$ characters are matched, retrieve entry $t_{1}(c)$ from the bad-symbol table for the text's character c causing the mismatch and entry $d_{2}(k)$ from the goodsufiix table and shift the pattern to the right by

$$
d=\max \left\{d_{1}, d_{2}\right\}
$$

where $d_{1}=\max \left\{t_{1}(c)-k, 1\right\}$.

Example of Boyer-Moore alg. application

A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z
1	2	6	6	6	6	6	6	6	6	6	6	6	6	3	6	6	6	6	6	6	6	6	6	6	6

B A ○ B A B
$d_{1}=t_{1}(K)=6 \quad \mathrm{BA} ○ \mathrm{~B}$ A B

\boldsymbol{k}	pattern	$\boldsymbol{d}_{\mathbf{2}}$
$\mathbf{1}$	BAOBAB	$\mathbf{2}$
$\mathbf{2}$	BAOBAB	$\mathbf{5}$
$\mathbf{3}$	BAOBAB	$\mathbf{5}$
$\mathbf{4}$	BAOBAB	$\mathbf{5}$
$\mathbf{5}$	BAOBAB	$\mathbf{5}$

$$
\begin{aligned}
& \mathrm{B} \text { A ○ B A B } \\
& d_{1}=t_{1}(1)-1=5 \\
& d_{2}(1)=2 \\
& \quad \text { B A } O \text { B A B (success) }
\end{aligned}
$$

A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 7 O2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Boyer-Moore example from their paper

Find pattern AAI_THEANㅗN in

7.3 Hashing

- A very efficient method for implementing a dictionary, i.e., a set with the operations:
- find
- insert
- delete
- Based on representation-change and space-for-time tradeofif ideas
- Important applications:
- symbol tables
- databases (extendible hashing)
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 7 O2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Hash tables and hash functions

The idea of hashing is to map keys of a given file of sive n into a table of size m, called the hash table, by using a predefined function, called the hash function,

$$
h: K \rightarrow \text { location (cell) in the hash table }
$$

Example: student records, key = SSN. Hash function: $h(K)=K \bmod m$ where m is some integer (typically, prime) If $m=1000$, where is record with $\mathrm{SSN}=314159265$ stored?

Generally, a hash function should:

- be easy to compute
- distribute keys about evenly throughout the hash table
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 702012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Collisions

If $h\left(K_{1}\right)=h\left(K_{2}\right)$, there is a colltision

Good hash functions result in fewer collisions but some collisions should be expected (birthday paradox)

Two principal hashing schemes handle collisions differently:

- Open hashing
- each cell is a header of linked list of all keys hashed to it
- Closed hashing
- one key per cell
- in case of collision, finds another cell by
- linear probing: use next free bucket
- double hashing: use second hash function to compute increment
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 7 O2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Open hashing (Separate chaining)

Keys are stored in linked lists outside a hash table whose elements serve as the lists' headers.
Example: A, FOOL, AND, HIS, MONEY, ARE, SOON, PARTIED $h(K)=$ sum of K 's letters' positions in the alphabet MOD 13

Key	A	FOOL	AND	HIS	MONEY	ARE	SOON	PARTIDD
$h(K)$	1	9	6	10	7	11	11	12

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | | | | | | | |

A
AND MONEY FOOL HIS ARE PARIUD

SOON

SearchefinkIbion to the Design \& Analysis of Algorithms," 3rd ed., Ch. 702012 Pearson

Open hashing (cont.)

- If hash function distributes keys uniformly, average length of linked list will be $u=n / m$. This ratio is called load factor.
- Average number of probes in successful, S, and unsuccessfiul searches, U:

$$
S \approx 1+\alpha / 2, \quad U=\alpha
$$

- Load u is typically kept small (ideally, about 1)
- Open hashing still works if $n>m$

Closed hashing (Open addressing)

Keys are stored inside a hash table.

Key	A	HOOL	AND	HIIS	MONEY	ARE	SOON	PARIIED
$h(K)$	1	9	6	10	7	11	11	12

0	1	23	45	6	7	8	9	10	11	12
	A									
	A						FOOL			
	A			AND			FOOL			
	A			AND			FOOL	HIS		
	A			AND	MONEY		FOOL	HIIS		
	A			AND	MONEY		FOOL	HIS	ARE	
	A			AND	MONEY		FOOL	HIIS	ARE	SOON
PARIED	A			AND	MONEY		FOOL	HIS	ARE	SOON

A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 7 O2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Closed hashing (cont.)

- Does not work if $n>m$
- Avoids pointers
- Deletions are not straightiorward
- Number of probes to find/insert/delete a key depends on load factor $\alpha=n / m$ (hash table density) and collision resolution strategy. For linear probing:

$$
S=(1 / 2)(1+1 /(1-\alpha)) \text { and } U=(1 / 2)\left(1+1 /(1-\alpha)^{2}\right)
$$

- As the table gets filled (a approaches 1), number of probes in linear probing increases dramatically:

α	$\frac{1}{2}\left(1+\frac{1}{1-\alpha}\right)$	$\frac{1}{2}\left(1+\frac{1}{(1-\alpha)^{2}}\right)$
50%	1.5	2.5
75%	2.5	8.5
90%	5.5	50.5

[^1]- All data records (or record keys) are stored at the leaves, in increasing order of the keys
- The parental nodes are used for indexing
- Keys are interposed with pointers to children.
- Key left to a pointer \leq all keys in child pointed by the pointer
$<$ key right to the pointer
- In addition, a B-tree of order $m \geq 2$ must satisfiy the following structural properties:
- The root is either a leaf or has between 2 and m childrens
- Each node, except for the root and the leaves, has between m/2 and m children
- The tree is balanced, i.e., all its leaves are at the same level.

B-Trees (Cont.)

- Example of a B-tree of order 4

- Search operation in B-tree
- B-tree ofiten used for indexing large data file
- Nodes represent disk pages
- Minimiving the node accesses (minimiving the height) will minimizes disk accesses.
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 7 O2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

B-Trees (Cont.)

- For any B-tree of order m with n nodes and height $h>0$, we have the following inequality

$$
n \geq 1+\sum_{i=1}^{h-1} 2\lceil m / 2\rceil^{i-1}(\lceil m / 2\rceil-1)+2\lceil m / 2\rceil^{h-1}
$$

- This gives an upper bound of h

$$
h \leq\left\lfloor\log _{\lceil m / 2\rceil} \frac{n+1}{4}\right\rfloor+1 .
$$

- Example: for a fille of 100 million records, we have

order m	50	100	250
h 's upper bound	6	5	4

A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 7 O2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

[^0]: A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 7 @2012 Pearson

[^1]: A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 7 ©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

