Chapter 7: Space-for-time tradeoffs

Two varieties of space-for-time algorithms:

- input enhancement preprocess the input (or its part) to store some info to be used later in solving the problem
 - counting methods for sorting
 - string searching algorithms
- *prestructuring* preprocess the input to make accessing its elements easier
 - hashing
 - indexing schemes (e.g., B-trees)

7.1 Sorting by Counting

Comparison-counting Sort

- for each element of a list to be sorted, count the total number of • elements smaller than this element and record the results in a table
- **Example of sorting by comparison counting**

Array A[05]		62	31	84	96	19	47
Initially	Count []	0	0	0	0	0	0
After pass $i = 0$	Count []	3	0	1	1	0	0
After pass $i = 1$	Count []		1	2	2	0	1
After pass $i = 2$	Count []			4	3	0	1
After pass $i = 3$	Count []				5	0	1
After pass $i = 4$	Count []					0	2
Final state	Count []	3	1	4	5	0	2
Array S[05]		19	31	47	62	84	96

A. Levitin "Introduction to the Design & Analysis of Algorithms," 3rd ed., Ch. 7 ©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Seudocode of Comparison-counting Sort

ALGORITHM ComparisonCountingSort(A[0..n - 1])//Sorts an array by comparison counting //Input: An array A[0..n-1] of orderable elements //Output: Array S[0..n-1] of A's elements sorted in nondecreasing order for $i \leftarrow 0$ to n - 1 do $Count[i] \leftarrow 0$ for $i \leftarrow 0$ to n - 2 do for $j \leftarrow i + 1$ to n - 1 do if A[i] < A[j] $Count[j] \leftarrow Count[j] + 1$ else $Count[i] \leftarrow Count[i] + 1$ for $i \leftarrow 0$ to n - 1 do $S[Count[i]] \leftarrow A[i]$ return S

u time efficiency $\Theta(n^2)$: is the same as the selection sort

Sorting by distribution counting

D EXAMPLE:

- Consider sorting the array: 13, 11, 12, 13, 12, 12
- Compute frequencies and distribution:

Distribution value indicates position of last occurrence of the array value in the sorted array.

Array values	11	12	13
Frequencies	1	3	2
Distribution values	1	4	6

• Process the array from right to left

put each array value in the position indicated by distribution value and reduce the distribution value by 1

A [5] = 12	
A [4] = 12	
A [3] = 13	
A [2] = 12	
A [1] = 11	
A [0] = 13	

D[0..2]

4

3

2

2

1

1

6

6

6

5

5

5

			<i>S</i> [0)5]		
				12		
			12			
						13
		12				
	11					
					13	

Pseudocode of distribution counting

ALGORITHM *DistributionCountingSort*(A[0..n - 1], l, u)

//Sorts an array of integers from a limited range by distribution counting //Input: An array A[0..n-1] of integers between l and u $(l \le u)$ //Output: Array S[0..n - 1] of A's elements sorted in nondecreasing order for $j \leftarrow 0$ to u - l do $D[j] \leftarrow 0$ //initialize frequencies for $i \leftarrow 0$ to n - 1 do $D[A[i] - l] \leftarrow D[A[i] - l] + 1$ //compute frequencies for $j \leftarrow 1$ to u - l do $D[j] \leftarrow D[j - 1] + D[j]$ //reuse for distribution for $i \leftarrow n - 1$ downto 0 do $j \leftarrow A[i] - l$ $S[D[j]-1] \leftarrow A[i]$ $D[j] \leftarrow D[j] - 1$ return S

Time efficiency: $\Theta(n)$

pattern: a string of *m* characters to search for *text*: a (long) string of *n* characters to search in

Brute force algorithm

Step 1 Align pattern at beginning of text

Step 2 Moving from left to right, compare each character of pattern to the corresponding character in text until either all characters are found to match (successful search) or a mismatch is detected

Step 3 While a mismatch is detected and the text is not yet exhausted, realign pattern one position to the right and repeat Step 2

String searching by preprocessing

Several string searching algorithms are based on the input enhancement idea of preprocessing the pattern

- Knuth-Morris-Pratt (KMP) algorithm preprocesses pattern left to right to get useful information for later searching
- Boyer -Moore algorithm preprocesses pattern right to left and store information into two tables

Horspool's algorithm simplifies the Boyer-Moore algorithm by using just one table

Horspool's Algorithm

A simplified version of Boyer-Moore algorithm:

- preprocesses pattern to generate a shift table that determines how much to shift the pattern when a mismatch occurs
- always makes a shift based on the text's character c aligned with the <u>last</u> character in the pattern according to the shift table's entry for c

$$s_0 \ldots c \ldots s_{n-1}$$

BARBER

How far to shift?

Look at first (rightmost) character in text that was compared:The character is not in the pattern

BAOBAB

The rightmost characters do match
B....B.

BAOBAB

Shift table

Shift sizes can be precomputed by the formula
 t(c) = { distance from c's rightmost occurrence in pattern among its first m-1 characters to its right end pattern's length m, otherwise

by scanning pattern before search begins and stored in a table called *shift table*

Shift table is indexed by text and pattern alphabet Eg, for BAOBAB :

A	в	С	D	E	F	G	H	I	J	к	L	М	N	0	P	Q	R	S	т	U	v	W	x	Y	Z
1	2	6	6	6	6	6	6	6	6	6	6	6	6	3	6	6	6	6	6	6	6	6	6	6	6

Example of Horspool's alg. application

A	в	С	D	E	F	G	н	I	J	K	L	М	N	0	Ρ	Q	R	S	т	U	v	W	x	Y	Z	_
1	2	6	6	6	6	6	6	6	6	6	6	6	6	3	6	6	6	6	6	6	6	6	6	6	6	6

BARD LOVED BANANAS

BAOBAB

BAOBAB

BAOBAB

BAOBAB (unsuccessful search)

Boyer-Moore algorithm

Based on same two ideas:

- comparing pattern characters to text from right to left
- precomputing shift sizes in two tables

- bad-symbol table indicates how much to shift based on text's character causing a mismatch

– good-suffix table indicates how much to shift based on matched part (suffix) of the pattern

Bad-symbol shift in Boyer-Moore algorithm

- If the rightmost character of the pattern doesn't match, BM algorithm acts as Horspool's
- If the rightmost character of the pattern does match, BM compares preceding characters right to left until either all pattern's characters match or a mismatch on text's character *c* is encountered after *k* > 0 matches

bad-symbol shift d₁ = max{t₁(c) - k, 1}, where t₁(c) is precomputed by Horspool's algorithm

Good-suffix shift in Boyer-Moore algorithm

- **Good-suffix shift** d_2 is applied after 0 < k < m last characters were matched
- d₂(k) = the distance between matched suffix of size k and its rightmost occurrence in the pattern that is not preceded by the same character as the suffix

Example: CABABA $d_2(1) = 2$

If there is no such occurrence, match the longest part of the *k*-character suffix with corresponding prefix;
 if there are no such suffix-prefix matches, *d*₂(*k*) = *m*

Example: WOWWOW $d_2(2) = 3$, $d_2(3) = 3$, $d_2(4) = 5$, $d_2(5) = 5$

Good-suffix shift in the Boyer-Moore alg. (cont.) After matching successfully 0 < k < m characters, the algorithm shifts the pattern right by $d = \max \{d_1, d_2\}$ where $d_1 = \max\{t_1(c) - k, 1\}$ is bad-symbol shift $d_2(k)$ is good-suffix shift

Boyer-Moore Algorithm (cont.)

Step 1 Fill in the bad-symbol shift table **Step 2** Fill in the good-suffix shift table **Step 3** Align the pattern against the beginning of the text **Step 4 Repeat until a matching substring is found or text ends: Compare the corresponding characters right to left.** If no characters match, retrieve entry $t_1(c)$ from the bad-symbol table for the text's character c causing the mismatch and shift the pattern to the right by $t_1(c)$. If 0 < k < m characters are matched, retrieve entry $t_1(c)$ from the bad-symbol table for the text's character c causing the mismatch and entry $d_2(k)$ from the goodsuffix table and shift the pattern to the right by $d = \max \{d_1, d_2\}$ where $d_1 = \max\{t_1(c) - k, 1\}$.

Example of Boyer-Moore alg. application

Α	в	С	D	E	F	G	н	I	J	K	L	М	N	0	Ρ	Q	R	S	т	U	v	W	x	Y	Z	
1	2	6	6	6	6	6	6	6	6	6	6	6	6	3	6	6	6	6	6	6	6	6	6	6	6	6

	BES	S _	_ K	N	E	W	_	Α	B	0	U	T		B	A	0	В	Α	В	S	
	BAO	BA	B																		
	$\boldsymbol{d}_1 = \boldsymbol{t}_1(\mathbf{F})$	$\mathbf{K}) = 0$	5	B	A	0	B	A	B												
				d_1	= t	$_{1}($	_)-2	2 =	4												
	pattern	d_2		\underline{d}_2	(2)	= :	<u>5</u>														
	BAO B A B	2							B	Α	0	В	Α	B							
	BAOBAB	5							$\frac{d}{d}_{1}$	<u>=</u> (1)	$\underline{t_1}(\underline{)} = 2$	<u>)-</u>] 2		<u>5</u>							
	BAOBAB	5							<u> </u>	(-)				В	A	0	В	A	В	(succes	S)
	BAOBAB	5																			
1																					

A. Levitin "Introduction to the Design & Analysis of Algorithms," 3rd ed., Ch. 7 ©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

k

1

2

3

Δ

5

BAOBAB

5

Boyer-Moore example from their paper___

Find pattern AT_THAT in WHICH_FINALLY_HALTS. _ _ AT_THAT

7.3 Hashing

A very efficient method for implementing a dictionary, i.e., a set with the operations:

- find
- insert
- delete

Based on representation-change and space-for-time tradeoff ideas

Important applications:

- symbol tables
- databases (*extendible hashing*)

The idea of *hashing* is to map keys of a given file of size *n* into a table of size *m*, called the *hash table*, by using a predefined function, called the *hash function*, $h: K \rightarrow \text{ location (cell) in the hash table}$ Example: student records, key = SSN. Hash function: $h(K) = K \mod m$ where *m* is some integer (typically, prime) If *m* = 1000, where is record with SSN= 314159265 stored?

Generally, a hash function should:

- be easy to compute
- distribute keys about evenly throughout the hash table

Collisions

If $h(K_1) = h(K_2)$, there is a *collision*

Good hash functions result in fewer collisions but some collisions should be expected (*birthday paradox*)

Two principal hashing schemes handle collisions differently:

- Open hashing

 each cell is a header of linked list of all keys hashed to it
- Closed hashing

- one key per cell
- in case of collision, finds another cell by
 - *linear probing:* use next free bucket
 - double hashing: use second hash function to compute increment

Open hashing (Separate chaining)

Keys are stored in linked lists <u>outside</u> a hash table whose elements serve as the lists' headers. Example: A, FOOL, AND, HIS, MONEY, ARE, SOON, PARTED h(K) = sum of K 's letters' positions in the alphabet MOD 13

Search for In Killsion to the Design & Analysis of Algorithms," 3rd ed., Ch. 7 ©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Open hashing (cont.)

- □ If hash function distributes keys uniformly, average length of linked list will be $\alpha = n/m$. This ratio is called *load factor*.
- Average number of probes in successful, S, and unsuccessful searches, U:

 $S \approx 1 + \alpha/2, \quad U = \alpha$

Load *α* is typically kept small (ideally, about 1)

Open hashing still works if n > m

Closed hashing (Open addressing)

Keys are stored <u>inside</u> a hash table.

Key	Α	F	00)L	A	ND	HIS	MON	IEY	ARE	SOC	DN I	PARTED
h(K)	1		9			6	10	7	1	11	11	L	12
0	1	2	3	4	5	6		7	8	9	10	11	12
	Α												
	Α									FOOL			
	Α					AND)			FOOL			
	Α					AND)			FOOL	HIS		
	Α					AND	MO	NEY		FOOL	HIS		
	Α					AND	MO	NEY		FOOL	HIS	ARE	
	Α					AND	MO	NEY		FOOL	HIS	ARE	SOON
PARTED	A					AND) MO	NEY		FOOL	HIS	ARE	SOON

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Closed hashing (cont.)

- Does not work if n > m
- Avoids pointers
- Deletions are *not* straightforward
- Number of probes to find/insert/delete a key depends on load factor α = n/m (hash table density) and collision resolution strategy. For linear probing:

 $S = (\frac{1}{2}) (1 + \frac{1}{(1 - \alpha)})$ and $U = (\frac{1}{2}) (1 + \frac{1}{(1 - \alpha)^2})$

As the table gets filled (α approaches 1), number of probes in linear probing increases dramatically:

α	$\frac{1}{2}(1 + \frac{1}{1-\alpha})$	$\frac{1}{2}(1+\frac{1}{(1-\alpha)^2})$
50%	1.5	2.5
75%	2.5	8.5
90%	5.5	50.5

7.4 B-Trees

All data records (or record keys) are stored at the leaves, in increasing order of the keys

- **The parental nodes are used for indexing**
 - Keys are interposed with pointers to children.
 - Key left to a pointer ≤ all keys in child pointed by the pointer
 < key right to the pointer
- In addition, a B-tree of order m ≥ 2 must satisfy the following structural properties:
 - The root is either a leaf or has between 2 and *m children*.
 - Each node, except for the root and the leaves, has between *m/2 and m* children
 - The tree is balanced, i.e., all its leaves are at the same level.

B-Trees (Cont.)

Example of a B-tree of order 4

- Search operation in B-tree
- B-tree often used for indexing large data file
 - Nodes represent disk pages
 - Minimizing the node accesses (minimizing the height) will minimizes disk accesses.

B-Trees (Cont.)

For any B-tree of order m with n nodes and height h>0, we have the following inequality

$$n \ge 1 + \sum_{i=1}^{h-1} 2\lceil m/2 \rceil^{i-1} (\lceil m/2 \rceil - 1) + 2\lceil m/2 \rceil^{h-1}.$$

D This gives an upper bound of h

$$h \leq \lfloor \log_{\lceil m/2 \rceil} \frac{n+1}{4} \rfloor + 1.$$

Example: for a file of 100 million records, we have

order m	50	100	250
h's upper bound	6	5	4