Chapter 6: Transform and Conquer

This group of techniques solves a problem by a tranasformation to

- a simpler/more convenient instance of the same problem (instance simplification)
- a dififerent representation of the same instance (representation change)
- a dififerent problem for which an algorithm is already available (problem reduction)
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 6 O2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

6.1 Instance simplification - Presorting

Solve a problem's instance by transforming it into another simpler/easier instance of the same problem

Presorting

Many problems involving lists are easier when list is sorted, e.g.

- searching
- computing the median (selection problem)
- checking if all elements are distinct (element uniqueness)

Also:

- Topological sorting helps solving some problems for dags.
- Presorting is used in many geometric algorithms.
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 6 @2012 Pearson

How fast can we sort?

Efficiency of algorithms involving sorting depends on efficiency of sorting.

Theorem (see Sec. 11.2): $\left\lceil\log _{2} n!\right\rceil \approx n \log _{2} n$ comparisons are necessary in the worst case to sort a list of size n by anv comparison-based algorithm.

Note: About $n \log _{2} n$ comparisons are also sufficient to sort array of size n (by mergesort).

Searching with presorting

Problem: Search for a given K in $A[0 . n-1]$

Presorting-based algorithm:
Stage 1 Sort the array by an efificient sorting algorithm
Stage 2 Apply binary search

Efficiency: $\Theta(n \log n)+O(\log n)=\Theta(n \log n)$

Good or bad?
Why do we have our dietionaries, telephone directories, etc. sorted?
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 6 @2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Element Uniqueness with presorting

- Presorting-based algorithm

Stage 1: sort by efificient sorting algorithm (e.g. mergesort)
Stage 2: scan array to check pairs of adiacent elements

Efficiency: $O(n \log n)+O(n)=O(n \log n)$

- Brute force algorithm

Compare all pairs of elements
Efificiency: $O\left(n^{2}\right)$

口 Another algorithm? Hashing
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 6 @2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

6.2 Instance simplification - Gaussian Elimination

Given: A system of n linear equations in n unknowns with an arbitrary coefficient matrix.

Transform to: An equivalent system of n linear equations in n unknowns with an upper triangular coefiicient matrix.

Solve the latter by substitutions starting with the last equation and moving up to the first one.

$$
\begin{array}{lrr}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b_{1} & a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=b_{2} & a_{22} x_{2}+\ldots+a_{2 n} x_{n}=b_{2}
\end{array}
$$

$$
a_{n 1} x_{1}+a_{n 2} x_{2}+\ldots+a_{n n} x_{n}=b_{n}
$$

$$
a_{n n} x_{n}=b_{n}
$$

A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 6 @2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Gaussian Elimination (cont.)

The transformation is accomplished by a sequence of elementary operations on the system's coefficient matrix (which don't change the system's solution):
for $i \leftarrow 1$ to $n-1$ do
replace each of the subsequent rows (i.e., rows $i+1, \ldots, n$)
by a difiference between that row and an appropriate multiple of the i-th row to make the new coefificient in the i-th column of that row 0

Example of Gaussian Elimination

Solve $\quad 2 x_{1}-4 x_{2}+x_{3}=6$

$$
3 x_{1}-x_{2}+x_{3}=11
$$

$$
x_{1}+x_{2}^{2}-x_{3}=-3
$$

Forward elimination

$$
\begin{array}{ccccccccc}
2 & -4 & 1 & 6 & & 2 & -4 & 1 & 6 \\
3 & -1 & 1 & 11 & \text { row2-(3/2)*row1 } & 0 & 5 & -1 / 2 & 2 \\
1 & 1 & -1 & -3 & \text { row3-(1/2)*row1 } & 0 & 3 & -3 / 2 & -6 \\
\text { row3-(3/5)*row2 } \\
& & & & -4 & 1 & 6 \\
0 & 5 & -1 / 2 & 2 \\
0 & 0 & -6 / 5 & -36 / 5
\end{array}
$$

Backward substitution

$$
\begin{aligned}
& x_{3}=(-36 / 5) /(-6 / 5)=6 \\
& x_{2}=(2+(1 / 2) * 6) / 5=1 \\
& x_{1}=(6-6+4 * 1) / 2=2
\end{aligned}
$$

A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 602012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Pseudocode and Efficiency of Gaussian Elimination

Stage 1: Reduction to an upper-triangular matrix

 for $i \leftarrow 1$ to $n-1$ dofor $j \leftarrow i+1$ to n do
for $k \leftarrow i$ to $n+1$ do

$$
A[j, k] \leftarrow A[j, k]-A[i, k] * A[j, i] / A[i, i] / / i m p r o v e!
$$

Stage 2: Back substitutions
for $j \leftarrow n$ downto 1 do
$t \leftarrow 0$
for $k \leftarrow j+1$ to n do

$$
t \leftarrow t+A[j, k] * x[k]
$$

$x[j] \leftarrow(A[j, n+1]-t) / A[j, j]$
Efificiency: $\Theta\left(n^{3}\right)+\Theta\left(n^{2}\right)=\Theta\left(n^{3}\right)$
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 6 @2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

6.3 Searching Problem

Problem: Given a (multi)set S of keys and a search key K, find an occurrence of K in S, if any

- Searching must be considered in the context of:
- fille size (internal vs, external)
- dynamics of data (static vs. dynamic)
- Dictionary operations (dynamic data):
- find (search)
- insert
- delete
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 6 @2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Taxonomy of Searching Algorithms

- List searching
- sequential search
- binary search
- interpolation search
- Tree searching
- binary search tree
- binary balanced trees: AVL trees, red-black trees
- multiway balanced trees: 2-3 trees, 2-3-4 trees, B trees
- Hashing
- open hashing (separate chaining)
- closed hashing (open addressing)
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 602012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Binary Search Tree

Arrange keys in a binary tree with the binary search

 tree property:

Example: 5, 3, 1, 10, 12, 7, 9
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 6 02012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Dictionary Operations on Binary Search Trees

Searching - straightiorward
Insertion - search for key, insert at leaf where search terminated
Deletion-3 cases:
deleting key at a leaf deleting key at node with single child deleting key at node with two children

Dfficiency depends of the tree's height: $\left\lfloor\log _{2} n\right\rfloor \leq h \leq n$-1, with height average (random filles) be about $3 \log _{2} n$

Thus all three operations have

- worst case efficiency: $\Theta(n)$
- average case efificiency: $\Theta(\log n)$

Bonus: inorder traversal produces sorted list

6.3 Balanced Search Trees

Attractiveness of binary search tree is marred by the bad (linear) worst-case efficiency. Two ideas to overcome it are:

- to rebalance binary search tree when a new insertion makes the tree "too unbalanced"
- AVL trees
- red-black trees
- to allow more than one key per node of a search tree
- 2-3 trees
- 2-3-4 trees
- B-trees
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 6 @2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Balanced trees: AVL trees

Definition An AVL tree is a binary search tree in which, for every node, the difiference between the heights of its left and right subtrees, called the balance factor, is at most 1 (with the height of an empty tree defined as -1)

Tree (a) is an AVL tree; tree (b) is not an AVL tree

Rotations

If a key insertion violates the balance requirement at some node, the subtree rooted at that node is transformed via one of the four rotations. (The rotation is always performed for a subtree rooted at an "unbalanced" node closest to the new leaf.)

Single R-rotation
Double LR-rotation

General case: Single R-rotation

General case: Double LR-rotation

double $L R$-rotation

A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 6 @2012 Pearson

AVL tree construction - an example

Construct an AVL tree for the list $5,6,8,3,2,4,7$

A VL tree construction - an example (cont.)

Analysis of AVL trees

ㅁ $h \leq 1.4404 \log _{2}(n+2)-1.327 / 7$ average height: $1.01 \log _{2} n+0.1$ for large n (found empirically)

- Search and insertion are $O(\log n)$
- Deletion is more complicated but is also $O(\log n)$
- Disadvantages:
- frequent rotations
- complexity
- A similar idea: red-black trees (height of subtrees is allowed to dififer by up to a factor of 2)
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 602012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Multiway Search Trees

Definition A multiway search tree is a search tree that allows more than one key in the same node of the tree.

Definition A node of a search tree is called an n-node if it contains $n-1$ ordered keys (which divide the entire key range into n intervals pointed to by the node's n links to its children):

$$
k_{1}<k_{2}<\ldots<k_{n-1}
$$

Note: Every node in a classical binary search tree is a 2-node
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 6 O2012 Pearson

2-3 Tree

Definition A 2-3 tree is a search tree that

- may have 2 -nodes and 3 -nodes
- height-balanced (all leaves are on the same level)

A 2-3 tree is constructed by successive insertions of keys given, with a new key always inserted into a leaf of the tree. If the leaf is a 3-node, it's split into two with the middle key promoted to the parent.
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 6 O2012 Pearson

2-3 tree construction - an example

Construct a 2-3 tree the list $9,5,8,3,2,4,7$

5

A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 6 @2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Analysis of 2-3 trees

- $\log _{3}(n+1)-1 \leq h \leq \log _{2}(n+1)-1$
- Search, insertion, and deletion are in $\Theta(\log n)$
- The idea of 2-3 tree can be generalived by allowing more keys per node
- 2-3-4 trees
- B-trees
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 6 @2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

6.4 Heaps and Heapsort

Definition A heap is a binary tree with keys at its nodes (one key per node) such that:

- It is essentially complete, i.e., all its levels are full except possibly the last level, where only some rightmost keys may be missing

- The key at each node is \geq keys at its children

Illustration of the heap's definition

10

4
5
a heap

not a heap

not a heap

Note: Heap's elements are ordered top down (along any path down from its root), but they are not ordered left to right
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 6 @2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Some Important Properties of a Heap

- There exists exactly one essentially complete binary tree with n nodes. Its height is equal to $\left\lfloor\log _{2} n\right\rfloor$.
- The root contains the largest key
- The subtree rooted at any node of a heap is also a heap
- A heap can be represented as an array

Heap's Array Representation

Store heap's elements in an array (whose elements indexed, for convenience, 1 to n) in top-down left-to-right order Example:

- Left child of node j is at $2 j$
- Right child of node j is at $2 j+1$
- Parent of node j is at $\lfloor j / 2\rfloor$
\square Parental nodes are represented in the first $\lfloor n / 2\rfloor$ locations
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 602012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Heap Construction (bottom-up)

Step 0: Initialize the structure with keys in the order given

Step 1: Starting with the last (rightmost) parental node, fix the heap rooted at it, if it doesn't satisfy the heap condition: keep exchanging it with its largest child until the heap condition holds

Step 2: Repeat Step 1 for the preceding parental node

Example of Heap Construction

Construct a heap for the list $2,9,7,6,5,8$

A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 6 O2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Pseudopodia of bottom-up heap construction

Algorithm HeapBottomUp(H[1..n])
//Constructs a heap from the elements of a given array
// by the bottom-up algorithm
//Input: An array $H[1 . . n]$ of orderable items
//Output: A heap $H[1 . . n]$
for $i \leftarrow\lfloor n / 2\rfloor$ downto 1 do
$k \leftarrow i ; \quad v \leftarrow H[k]$
heap \leftarrow false
while not heap and $2 * k \leq n$ do

$$
j \leftarrow 2 * k
$$

$$
\text { if } j<n \quad / / \text { there are two children }
$$

$$
\text { if } H[j]<H[j+1] \quad j \leftarrow j+1
$$

if $v \geq H[j]$ heap \leftarrow true
else $H[k] \leftarrow H[j] ; \quad k \leftarrow j$
$H[k] \leftarrow v$

Stage 1: Construct a heap for a given list of n keys

Stage 2: Repeat operation of root removal $n-1$ times:

- Exchange keys in the root and in the last (rightmost) leaf
- Decrease heap size by 1
- If necessary, swap new root with larger child until the heap condition holds

Example of Sorting by Heapsort

Sort the list $2,9,7,6,5,8$ by heapsort

Stage 1 (heap construction)
297658
$2 \begin{array}{llllll}2 & 9 & 8 & 6 & 5 & 7\end{array}$
$\begin{array}{llllll}2 & 9 & 8 & 6 & 5 & 7\end{array}$
$9 \quad 2 \begin{array}{lllll}9 & 8 & 6 & 5 & 7\end{array}$
$9 \quad 6 \quad 8 \quad 2 \quad 5 \quad 7$

Stage 2 (root/max removal)

$$
\begin{array}{llllll}
9 & 6 & 8 & 2 & 5 & 7 \\
7 & 6 & 8 & 2 & 5 & 9 \\
8 & 6 & 7 & 2 & 5 & 9 \\
\hdashline \mathbf{5} & 6 & 7 & 2 & 8 & 9 \\
7 & 6 & 5 & 2 & 8 & 9 \\
2 & 6 & 5 & 7 & 8 & 9 \\
6 & 2 & 5 & 7 & 8 & 9 \\
\hline 5 & 2 & 6 & 7 & 8 & 9 \\
5 & 2 & 6 & 7 & 8 & 9 \\
2 & 5 & 6 & 7 & 8 & 9
\end{array}
$$

A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 602012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Analysis of Heapsort

Stage 1: Build heap for a given list of n keys
worst-case

$$
C(n)=\sum_{i=0}^{\substack{h-1}(h-i) 2 i}=2\left(n-\log _{2}(n+1)\right) \in \Theta(n)
$$

Stage 2: Repeat operation of root removal n - 1 times (fix heap)
worst-case $n-1$

$$
C(n)=\sum_{i=1} 2 \log _{2} i \in \Theta(n \log n)
$$

Both worst-case and average-case efficiency: $\Theta(n \log n)$ In-place: yes
Stability: no (e.g., 1 1)
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 6 O2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Priority Queue

A priority queue is the ADT of a set of elements with numerical priorities with the following operations:

- find element with highest priority
- delete element with highest priority
- insert element with assigned priority (see below)
- Heap is a very efficient way for implementing priority queues
- Two ways to handle priority queue in which highest priority = smallest number
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 6 @2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Insertion of a New Element into a Heap

- Insert the new element at last position in heap.
- Compare it with its parent and, if it violates heap condition, exchange them
- Continue comparing the new element with nodes up the tree until the heap condition is satisfied

Example: Insert key 10

Efiliciency: $O(\log n)$
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 602012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

6.5 Horner's Rule For Polynomial Evaluation

Given a polynomial of degree \boldsymbol{n}

$$
p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}
$$

and a specific value of x, find the value of p at that point.

Two brute-force algorithms:
$p \leftarrow 0$
$p \leftarrow a_{0} ;$ power $\leftarrow 1$
for $\boldsymbol{i} \leftarrow \boldsymbol{n}$ downto 0 do
power $\leftarrow 1$
for $j \leftarrow 1$ to i do
power \leftarrow power * x
$p \leftarrow p+a_{i} *$ power
for $i \leftarrow 1$ to n do
power \leftarrow power * x
$p \leftarrow p+a_{i} *$ power
return p
return p
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 6 @2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Horner's Rule

Example: $p(x)=2 x^{4}-x^{3}+3 x^{2}+x-5=$

$$
\begin{aligned}
& =x\left(2 x^{3}-x^{2}+3 x+1\right)-5= \\
& =x\left(x\left(2 x^{2}-x+3\right)+1\right)-5= \\
& =x(x(x(2 x-1)+3)+1)-5
\end{aligned}
$$

Substitution into the last formula leads to a faster algorithm

Same sequence of computations are obtained by simply arranging the coefficient in a table and proceeding as follows:

coefficients	2	-1	3	1	-5

$x=3$

Horner's Rule pseudocode

ALGORITHM Horner (P [0..n], x)

//Evaluates a polynomial at a given point by Horner's rule //Input: An array $P[0 . . n]$ of coefficients of a polynomial of degree n (stored from the lowest to the highest) and a number x //Output: The value of the polynomial at x
$p \leftarrow P[n]$
for $i \leftarrow n-1$ downto 0 do

$$
p \leftarrow x * p+P[i]
$$

return p
Efficiency of Horner's Rule: \# multiplications = \# additions = n
Synthetic division of $p(x)$ by $\left(x-x_{0}\right)$
Example: Let $p(x)=2 x^{4}-x^{3}+3 x^{2}+x-5$. Find $\left.p(x)\right) /(x-3)$
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 6 @2012 Pearson

Computing \boldsymbol{a}^{n} (revisited)

Lefitio-right binary exponentiation

Initialive product accumulator by 1.
Scan n 's binary expansion from lefit to right and do the following:
If the current binary digit is 0 , square the accumulator (\mathbf{S}); if the binary digit is 1 , square the accumulator and multiply it by a (SMD).

Example: Compute a ${ }^{13}$. Here, $n=13=1101_{2}$ binary rep. of 13: 1

SM SM S SM
accumulator: $1 \quad 1^{22^{*} *} a=a \quad a^{2 *} a=a^{3}\left(a^{3}\right)^{2}=a^{6}\left(a^{0}\right)^{2 *} a=a^{13}$ (computed lefit-to-right)

Left-to-right binary exponentiation

ALGORITHM LeftRightBinaryExponentiation($a, b(n)$)
//Computes a^{n} by the left-to-right binary exponentiation algorithm $/ /$ Input: A number a and a list $b(n)$ of binary digits b_{I}, \ldots, b_{0}
// in the binary expansion of a positive integer n
//Output: The value of a^{n}
product $\leftarrow a$
for $i \leftarrow I-1$ downto 0 do

$$
\begin{aligned}
& \text { product } \leftarrow \text { product } * \text { product } \\
& \text { if } b_{i}=1 \text { product } \leftarrow \text { product } * a
\end{aligned}
$$

return product

Efficiency: $b \leq \operatorname{MI}(n) \leq 2 b$ where $b=\left\lfloor\log _{2} n\right\rfloor+1$

Computing a^{n} (cont.)

Scan n^{\prime} s binary expansion from right to left and compute a^{n} as the product of terms $a^{2 i}$ corresponding to 1 's in this expansion.

Example Compute a^{13} by the right-to-left binary exponentiation. Here, $n=13=1101_{2}$.

Efiriciency: same as that of left-to-right binary exponentiation

Right-to-left binary exponentiation

ALGORITHM RightLeftBinaryExponentiation($a, b(n)$)

//Computes a^{n} by the right-to-left binary exponentiation algorithm
//Input: A number a and a list $b(n)$ of binary digits b_{I}, \ldots, b_{0}
$/ / \quad$ in the binary expansion of a nonnegative integer n
//Output: The value of a^{n}
term $\leftarrow a \quad$ //initializes $a^{2^{i}}$
if $b_{0}=1$ product $\leftarrow a$
else product $\leftarrow 1$
for $i \leftarrow 1$ to I do

```
term}\leftarrow\mathrm{ term *term
if }\mp@subsup{b}{i}{}=1\mathrm{ product }\leftarrow\mathrm{ product }*\mathrm{ term
```

return product

6.6 Problem Reduction

This variation of transform-and-conquer solves a problem by a transforming it into diffierent problem for which an algorithm is already available.

To be of practical value, the combined time of the transformation and solving the other problem should be smaller than solving the problem as given by another method.

Examples of Solving Problems by Reduction

- computing $\operatorname{lcm}(m, n)$ via computing $\operatorname{gcd}(m, n)$
- counting number of paths of length n in a graph by raising the graph's adjacency matrix to the n-th power
- transforming a maximization problem to a minimivation problem and vice versa (also, min-heap construction)
- linear programming (Knapsack problem can be formulated as linear programming problem)
- reduction to graph problems (e.g., solving purnles via statespace graphs)

