Chapter 5: Divide-and-Conguer
rrr

rFrau

1'he most-well'known algorithmi design strategy:

Divide instance ofiproblem inte two or more
smaller instances

Solve smaller Instances recursively

Obtain selution to original (Iarger) instance by
combining these solutions

144

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

| g

Divide-and-Conguer Trechniguie (cont.)

I

a problem of size n

subproblem 1 subproblem 2
of size n/2 of size n/2

a solution to a solution to
subproblem 1 subproblem 2

a solution to
the original problem

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2

11

| g

144

Divide-and-Conguier Examples
rrr

Sorting: mergesort and quUICKSOrt
Binary tree traversals
Multiplication of large Integers

Matrix multiplication: Strassen’s algorithm

Closest-pair and convex-hullralgorithms

Binary search: decrease-by-half (or degenerate divide&.cong.)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

General Divide-and-Conguer RecUrrence

T(n) = al(n/b) + f(n) where f(n) € B®(n%), d=0

Master Theorem: Ifa<b? T(n) € B(n%
Ifa=hd T(n) e ®n%log n)
[fa>hd, T(n) e 6L

Note: The same results hold with O instead of .

Examples: 1(n)=4T(n/2) + n = 1(n) € ?
T(n)=4T(n/2) + nc= T(n) e ?
T(n)=4T(n/2) + n°= T(n) e ?

144

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

I'rr

| g

144

5.1 MIergesort

r'rr

vy
Split array A[0..n-1] in two about equal halves and make

copies ofieach halfs in arrays B.and C
Sort arrays B and C recursively.
Merge sorted arrays B and C into array A as follows:

Repeat the following until'no elements remain: in one of
the arrays:

compare the first elements in the remaining
UNPFrOCESSEd portions ofithe arrays

copy. the smaller of the twointo A, while
Incrementing the mdex idicating the UNpProcessea
portion ofithat array

Once all elements in one of: the arrays are pProcessed,

copy. the remaining tunprocessed elements from the other
array into A.

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Pseucocode off Mergesort

ALGORITHM Mergesort(A[0..n —1])

/ISorts array A[0..n — 1] by recursive mergesort

//Input: An array A|0O..n — 1] of orderable elements
//Output: Array A[0..n — 1] sorted in nondecreasing order
ifn>1

copy A[0..|n/2] — 1] to B[0..|n/2] — 1]

copy A[|n/2]..n — 1] to C[0..[n/2] — 1]
Mergesort(B|0..|n/2] — 1])
Mergesort(C[0..[n/2] — 1])
Merge(B, C, A)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Pseucdocode ofi Merge

I'rr

ALGORITHM Merge(B[0..p — 1], C[0..g — 1], A[O0..p +g — 1])

//Merges two sorted arrays into one sorted array

[/Input: Arrays B|0..p — 1] and C[0..g — 1] both sorted

//Output: Sorted array A[0..p + ¢ — 1] of the elements of B and C
[< 0; j <0, k<0
whilei < pand j < g do

if B[i] < C[/]

Alk] < Blil; i < i+ 1

else A[k] < C[j]: j«j+1

k<—k+1
ifi =p

copy Clj..g — 1]to Alk..p + g — 1]
else copy Bli..p — 1| to Alk..p +q — 1]

-y
- m

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

A

| g

i1id

Mergesort Example

0 HEEEBODD

12345789

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

r'rr

Analysis of: MEergesort
r'rr

All'cases have same efficiency: ®(n log n)

Number ofi comparisons in the Worst case IS close to
theoreticalminimum for comparisen-pased serting:

[log, nlll = nlogyn - 1.44n
Space requirement: G(n) (not in-place)

Can be iImplemented without recursion (bottom-up)

111

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9

111

5.2 Quicksort
: .

Select a pivot (partitioning element) — here, the first element

Rearrange the list so that all the elements in the first s
positions are smaller than or equal to the pivot and all the
elements In the remaining N-s positions are larger than or:
equal‘to the pivot (see next slide for an algorithm)

Alil<p Ali]=p
EXxchange the pivot with the last element in the first (1'e.; <)

subarray — the pivot IS now I its final position
SOt the two subarrays Fecursively

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 10

A

| g

Quicksort: Seucdocode
I'r!

ALGORITHM Quicksort(All..r])
/[Sorts a subarray by quicksort
//Input: Subarray of array A[0..n — 1], defined by its left and right
/1 indices [/ and r

//Output: Subarray A[l..r] sorted in nondecreasing order
ifl <r
s < Partition (A[f .r|) /ls is a split position
Quicksort(All..s — 1])
Quicksort(Als + 1..r])

i

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 1

Hoare’s Partitioning Algorithm

ALGORITHM HoarePartition(All..r])

[[Partitions a subarray by Hoare’s algorithm, using the first element
Il as a pivot
[[Input: Subarray of array A[0..n — 1], defined by its left and right
Il indices | and r (I < r)
[/Output: Partition of A[l..r]. with the split position returned as
// this function’s value
p < All]
i< j<—r+1
repeat
repeat i <— i + 1l until A[i]= p
repeat j «— j — luntil A[j] < p
swap(A[i], A[j])
until i = j
swap(Ali], A[j]) //undo last swap wheni = j
swap(A[l], A[j])
return j

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

| g

114

Quicksort Example

o o 1 96 2 4 7

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

[11.

13

Analysis ofi Quicksort
J 2 'rr

rFrau

Best case: split in the middlie — O(n log n)
Worst case: sorted array! — O(n?)
AVerage case: random arrays— O(n log n)

Improvements:
petter pivot selection: median ofithree partitioning
switch to Isertion sort on small subarrays
elimination of FECUrSION

T'hese combine to 20-25% improvement

Considered the method ofichoice for internal sorting of large
arrays (n = 10000)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 14

-

111

5.5 Binary Tiree Algorithms
r'rr

rVrau
Binary tree Is a divide-and-conguer ready structure!

EXx. 1: Classic traversals (preorder;, inorder, postorader)
Algorithm Inorder(T)

A A a
Inorder(Ti..) o C 0 C
print(root ofi 1) d e e « ¢
Inorder (i) R

- Efficiency: O(n)

-

P

= A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
8 Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 15

| gV

144

Binary Tiree Algorithms (cont.)

EX. 2: Computing the height of:a binary tree
[

n(T) = max{h(T,), (1)) + 1 1 T2 and

n) = -1

Efficiency: O(n)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

r'rr

16

5.4 Multiplication ofi lLarge Integers I

Consider: the problem off multiplying two' (large) n-cdigit inte'gérs‘
represented by arrays ofitherr digits such as:

A = 12545676901857966429 B = 671694521264620912556

I'he grade-school algorithm:
ay A .ee Ao
D, ;... b,
(le) d11d12 dln
(dZO) d21(:122 d2n

(an) dn1dn2 dnn
<= Efficiency: n2one-digit multiplications

= o m A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
8 Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 17

First Divide-and-Conguer Algorithm '

A small example: A * Bwhere A = 21385 and B'= 4014 S

A = (21-102 + 35), B = (40 -102 + 14)
So, A * B = (21 -102 + 35) * (40 -102 + 14)
— 21 % 40 -10* + (21 * 14 + 35 % 40) -102 + 35 = 14

In general; It A = AjAand B = BB, (Where A and B are n-digit,
Ay A, By, By are ni2-digit nUMmMMBEers),

Recurrence for the number ofi one-digit multiplications M(n):
M(n) = 4M(n/2), M(1) =1

smpSolution: M(n) = ne
- m

= o m A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
8 Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 18

144

Second Divide-and-Congquer Algorithm’"

rFrau

AxB=A*B-100 + (A * B, + A, % By) - 1072+ A * B,

T'he 1dea IS to decrease the number of: multiplications from 4 to S:
(Ag A)= (By £ By) = A By + (A By + A % By) 40+ B

Iies (A Byt Ap s By) = (Ag + A)i (By By) = Ay By = A * B

which requires only 3 multiplications at the expense ofi (4-1) extra
add/sub.

Recurrence for the number of multiplications M(n):
M(n) = SM(n/2), M(1) =1

Solution: M(n) = 3'092M = 0023 ~ 1,585

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 19

| g

144

Example of [Large-Integer Multiplicatioln"

2135 * 4014

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 20

Strassen’s Matrix Multiplication

I'rr

rVrau
Strassen observed [1969] that the product of: two matrices can
e computed as follows:

COO C:01 AOO AOl B00 BOl
_ 5
C:lO Cll AlO All BlO Bll
M, +M, - M+ M, M, + M
) M, + M, M, +M, - M,+ M,

111

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 21

Formulas for Strassen’s Algorithm

I'rr

rFrau

My = (Agg = Asr) * (Bgg + Byy)
M5 = (Aqg + Agg) * B
Mz = Agg * (Bpy = Bia)
M, = Aq * (Big - Bo)
ME = (Agy + Agg) * By
M = (Aig = Ago) * (Bgg + Boy)

M= = (Agy - Agp) = (B + Biy)

111

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 22

Analysis of Strassen’s Algorithm

I'rr

rVrau
IT:n 1S Not a power: of 2, matrices can be padded with Zeros.

Number of multiplications:
M(n) = 7M(n/2), M(1) =1

Solution: M(n) = 7'°92n = o827~ 02607 y/s. - 03 of brute-force alg.

Algorithms with better asymptotic efficiency are known but they.
are even more complex.

144

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

| g

23

5.5 Closest-Pair Problem by Divide-and-Conguer

rFrau

Step 1 Divide the points given 1into two subsets Ppand P, by a
vertical line x = m so that halfithe points lie to the Ieft or on
the line and half'the points lie to the right or on the line.

111

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 24

| g

Closest Pair by Divide-and-Conqguer (cont.) I

rFrau

Step 2 Find recursively the closest pairs for the left and right
SUISELS.

Step's Setd = min{d; d.}
We can limit our attention to the points in the symmetric
vertical strip S ofiwidth 2d as possible closest pair. (‘Tihe

poInts are stored and processed in INcreasing order of
thelr y coordinates.)

Step 4 Scan the points in the vertical strip S frrom the lowest up.
For every point p(x,y) in the strip, INSPeCt poInts In
In the strip that may e closer to p than d. There can be
no more than Ssuch points following p on the strip list!

144

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 25

| g

144

Efficiency of: the Closest-Pair Algorithm

Running time of: the algorithm 1S described by,
1(n) = 21(n/2) + M(n), where M(n) € O(n)

By the Master Ttheorem (Witha=2, b =2, d=1)
1(n) e O(n log n)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

I'rr

rFrau

26

uickhull” Algorithm
2 : 'rr

Convex hull: smallest convex set that includes given points S
ASSUME poInts are sorted by x-coordinate values
|dentify extreme paints Py and P; (leftmost and rightmost)

Compute upper hull recursively:
find point P, that is farthest away from line P;P;
compute the upper: hulltof:the points to the left ofiline PP
compute the upper: hull'ofithe points to the left ofline P P>

Compute lower hulliima similar manner

max .

: P,

o S

=

| -
o m A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson

8 Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 27

Efficiency of @uicknull"Algorithm '

Finding point farthest away from:line P, P; can be done in

linear time
Time efficiency:
Worst case: O(n?) (as quicksort)

average case: O(n) (Under reasonable assumptions about
distribution of points given)

Ifipoints are not initially sorted by X-coordinate value, this
can be accomplished'in ©(n log n) time

Several O(n'log n)algorithms for convex hull are known

144

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 28

| g

	Slide 1: Chapter 5: Divide-and-Conquer
	Slide 2: Divide-and-Conquer Technique (cont.)
	Slide 3: Divide-and-Conquer Examples
	Slide 4
	Slide 5: 5.1 Mergesort
	Slide 6: Pseudocode of Mergesort
	Slide 7: Pseudocode of Merge
	Slide 8: Mergesort Example
	Slide 9: Analysis of Mergesort
	Slide 10: 5.2 Quicksort
	Slide 11: Quicksort: Seudocode
	Slide 12: Hoare’s Partitioning Algorithm
	Slide 13: Quicksort Example
	Slide 14: Analysis of Quicksort
	Slide 15: 5.3 Binary Tree Algorithms
	Slide 16: Binary Tree Algorithms (cont.)
	Slide 17: 5.4 Multiplication of Large Integers
	Slide 18: First Divide-and-Conquer Algorithm
	Slide 19: Second Divide-and-Conquer Algorithm
	Slide 20: Example of Large-Integer Multiplication
	Slide 21: Strassen’s Matrix Multiplication
	Slide 22: Formulas for Strassen’s Algorithm
	Slide 23: Analysis of Strassen’s Algorithm
	Slide 24: 5.5 Closest-Pair Problem by Divide-and-Conquer
	Slide 25: Closest Pair by Divide-and-Conquer (cont.)
	Slide 26: Efficiency of the Closest-Pair Algorithm
	Slide 27: Quickhull Algorithm
	Slide 28: Efficiency of Quickhull Algorithm

