Chapter 4: Decrease-and-Conquer

1. Reduce problem instance to smaller instance of the same problem
2. Solve smaller instance
3. Extend solution of smaller instance to obtain solution to original instance

- Can be implemented either top-down approach (with recursive solution), or
- bottom-up, approach, also referred to as inductive or incremental approach
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 402012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

3 Types of Decrease and Conquer

- Decrease by a constant (usually by 1):
- insertion sort
- topological sorting
- algorithms for generating permutations, subsets
- Decrease by a constant factor (usually by halfi)
- binary search and bisection method
- exponentiation by squaring
- multiplication à la russe
- Variable-size decrease
- Euclid's algorithm $-\operatorname{gcd}(m, n)=\operatorname{gcd}(n, m \bmod n)$.
- selection by partition
- Nim-liksetgamessign \& Analysis of Algorithms," 3rd ed., Ch. 402012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

What's the difference?

Consider the problem of exponentiation: Compute a^{μ}

- Decrease by one:

$$
f(n)= \begin{cases}f(n-1) \cdot a & \text { if } n>0, \\ 1 & \text { if } n=0,\end{cases}
$$

- Decrease by constant factor:

$$
a^{n}= \begin{cases}\left(a^{n / 2}\right)^{2} & \text { if } n \text { is even and positive, } \\ \left(a^{(n-1) / 2}\right)^{2} \cdot a & \text { if } n \text { is odd, } \\ 1 & \text { if } n=0\end{cases}
$$

4.1 Insertion Sort

To sort array $\mathrm{A}[0 . . n-1]$, sort $\mathrm{A}[0 . \ldots n-2]$ recursively and then insert $A[n-1]$ in its proper place among the sorted $\mathrm{A}[0 . . n-2]$

- Usually implemented botitom up (nonrecursively)

Example: Sort 6, 4, 1, 8, 5

| 6 | 4 | 1 | 1 | 8 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 4 | 6 | 1 | 8 | 5 | |
| 1 | 4 | 6 | 8 | 5 | |
| 1 | 4 | 6 | 8 | 5 | |
| 1 | 4 | 5 | 6 | 8 | |

A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 4 @2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Pseudocode of Insertion Sort

ALGORITHM InsertionSort (A[0..n-1])

//Sorts a given array by insertion sort
//Input: An array $A[0 . . n-1]$ of n orderable elements
//Output: Array $A[0 . . n-1]$ sorted in nondecreasing order for $i \leftarrow 1$ to $n-1$ do
$v \leftarrow A[i]$
$j \leftarrow i-1$
while $j \geq 0$ and $A[j]>v$ do

$$
A[j+1] \leftarrow A[j]
$$

$$
j \leftarrow j-1
$$

$A[j+1] \leftarrow v$
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 4 @2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Analysis of Insertion Sort

- Time efficiency
$C_{\text {worss }}(n)=n(n-1) / 2 \in \Theta\left(n^{2}\right)$
$\mathrm{C}_{\mathrm{avg}}(n) \approx n^{2} / 4 \in \Theta\left(n^{2}\right)$
$C_{\text {bess }}(n)=n-1 \in \Theta(n) \quad$ (also fast on almost sorted arrays)
- Space efificiency: in-place
- Stability: yes
- Best elementary sorting algorithm overall
- Binary insertion sort
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 402012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

4.2 Dags and Topological Sorting

A dug: a directed acyclic graph, i.e. a directed graph with no (dlirected) cycles

a dag

Arise in modeling many problems that involve prerequisite constraints (construction projects, document version control)

Vertices of a dag can be linearly ordered so that for every edge its starting vertex is listed before its ending vertex (topological sorting). Being a dag is also a necessary condition for topological sorting be possible.
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 402012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Topological Sorting Example

Order the following items in a food chain

A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 4 @2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

DiS-based Algorithm

DrS-based algorithm for topological sorting

- Perform DAS traversal, noting the order vertices are popped off the traversal stack
- Reverse order solves topological sorting problem
- Back edges encountered? \rightarrow NOT a dag!

Example:

Efficiency:
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 4 @2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Source Removal Algorithm

Source removal algorithm

Repeatedly identify and remove a source (a vertex with no incoming edges) and all the edges incident to it until either no vertex is left (problem is solved) or there is no source among remaining vertices (not a dag)

Example:

Efficiency: same as efificiency of the DrS-based algorithm
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 402012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

4.3 Generating Permutations

Minimal-change decrease-by-one algorithm

If $n=1$ return 1; otherwise, generate recursively the list of all permutations of $12 \ldots n-1$ and then insert n into each of those permutations by starting with inserting n into 12...n-1 by moving right to left and then switching direction for each new permutation

Example: $n=3$
start 1
insert 2 into 1 right to left 12 insert 3 into 12 right to left $123 \quad 132$ 312 insert 3 into 21 leff to right $321 \quad 231 \quad 213$

Other permutation generating algorithms

- Johnson-Trotter (p. 145)
- Lexicographic-order algorithm (p. 146)
- Heap's algorithm (Problem 4 in Exercises 4.3)

Generating Sulbsets: (1)

subsets

0	\varnothing						
1	\varnothing	$\left\{a_{1}\right\}$					
2	\varnothing	$\left\{a_{1}\right\}$	$\left\{a_{2}\right\}$	$\left\{a_{1}, a_{2}\right\}$			
3	\varnothing	$\left\{a_{1}\right\}$	$\left\{a_{2}\right\}$	$\left\{a_{1}, a_{2}\right\}$	$\left\{a_{3}\right\}$	$\left\{a_{1}, a_{3}\right\}$	$\left\{a_{2}, a_{3}\right\}$

FIGURE 4.10 Generating subsets bottom up.

Generating Subsets: (2)

Bincrey reflected Gray code: minimal-change algorithm for generating 2^{μ} bit strings corresponding to all the subsets of an n-element set where $n>0$

If $n=1$ make list L of two bit strings 0 and 1 else
generate recursively list $L 1$ of bit strings of length $n-1$ copy list $L 1$ in reverse order to get list $L 2$ add 0 in front of each bit string in list $L 1$ add 1 in front of each bit string in list $L 2$ append $L 2$ to $L 1$ to get L return L

bit strings	000	001	010	011	100	101	110	111
subsets	\varnothing	$\left\{a_{3}\right\}$	$\left\{a_{2}\right\}$	$\left\{a_{2}, a_{3}\right\}$	$\left\{a_{1}\right\}$	$\left\{a_{1}, a_{3}\right\}$	$\left\{a_{1}, a_{2}\right\}$	$\left\{a_{1}, a_{2}, a_{3}\right\}$

[^0]Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Generating Subsets: (3)

Subsets (Binary reflected Gray code)
n

2	00	01	11	10

$\begin{array}{lllllllll}3 & 000 & 001 & 011 & 010 & 110 & 111 & 101 & 100\end{array}$

4
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 4 @2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

4.4 Decrease-by-Constant-Factor Algorithms

> In this variation of decrease-and-conquer, instance sive is reduced by the same factor (typically, 2)

Examples:

- binary search and the method of bisection
- exponentiation by squaring
- multiplication à la russe (Russian peasant method)
- fake-coin purwle
- Josephus problem

Binary Search

Very efficient algorithm for searching in sorted array:

K

VS

$$
\mathrm{A}[0] \ldots \mathrm{A}[m] \ldots \mathrm{A}[n-1]
$$

If $K=A[m]$, stop (successful search); otherwise, continue searching by the same method in $A\left[0_{\circ} m-1\right]$ if $K<A[m]$ and in $A[m+1 \ldots n-1]$ if $K>A[m]$
$l \leftarrow 0 ; r \leftarrow n-1$
while $\boldsymbol{l} \leq \boldsymbol{r}$ do
$m \leftarrow\lfloor(l+r) / 2\rfloor$
if $K=A[m]$ return m
else if $K<A[m] r \leftarrow m-1$
else $l \leftarrow m+1$
return -1
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 4 ©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Binary Search: Example

As an example, let us apply binary search to searching for $K=70$ in the array

3	14	27	31	39	42	55	70	74	81	85	93	98

The iterations of the algorithm are given in the following table:

index	0	1	2	3	4	5	6	7	8	9	10	11	12
value	3	14	27	31	39	42	55	70	74	81	85	93	98
ation 1	l						m						r
ation 2								l		m			r
ation 3								l, m					

[^1]
Analysis of Binary Search

- Time efiliciency
- worst-case recurrence: $C_{w y}(\boldsymbol{a})=1+C_{w}(\lfloor n / 2\rfloor), C_{w}(1)=1$ solution: $C_{w}(n)=\left\lceil\log _{2}(n+1)\right\rceil$

This is VERY fast: e.g., $\mathrm{C}_{w}\left(10^{6}\right)=20$

- Optimal for searching a sorted array (hashing even better)
- Limitations: must be a sorted array (not linked list)
- Has a continuous counterpart called bisection method for solving equations in one unknown $f(x)=0$ (see Sec. 12.4)

Exponentiation by Squaring

The problem: Compute a^{n} where \boldsymbol{n} is a nonnegative integer

The problem can be solved by applying recursively the formulas:
For even values of n

$$
a^{n}=\left(a^{n / 2}\right)^{2} \text { if } n>0 \text { and } a^{0}=1
$$

For odd values of n

$$
\boldsymbol{a}^{n}=\left(\boldsymbol{a}^{(n-1) / 2}\right)^{2} \boldsymbol{a}
$$

Recurrence: $\mathrm{M}(n)=\mathrm{M}(\lfloor n / 2\rfloor)+\mathrm{f}(n)$, where $\mathrm{f}(n)=1$ or 2 ,

$$
M(0)=0
$$

Master Theorem: $\mathrm{M}(n) \in \Theta(\log n)=\Theta(b)$ where $b=\left\lceil\log _{2}(n+1)\right\rceil$
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 4 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Russian Peasant Multiplication

The problem: Compute the product of two positive integers

Can be solved by a decrease-by-half algorithm based on the following formulas.

For even values of n :

$$
n * m=\frac{n}{2} * 2 m
$$

For odd values of n :

$$
n * m=\frac{n-1}{2} * 2 m+m \text { if } n>1 \text { and } m \text { if } n=1
$$

Example of Russian Peasant Multiplication

Compute $20 * 26$
$n \quad m$
$20 \quad 26$
$\begin{array}{ll}10 & 52\end{array}$
$\begin{array}{lll}5 & 104 & 104\end{array}$
$2208+$
$\begin{array}{lll}1 & 416416\end{array}$
520

Note: Method reduces to adding m 's values corresponding to odd n 's.

A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 4 @2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Fake-Coin Puwhle (simpler version)

> There are n identically looking coins one of which is fake. There is a balance scale but there are no weights; the scale can tell whether two sets of coins weigh the same and, if not, which of the two sets is heavier (but not by how much). Design an efiricient algorithm for detecting the fake coin. Assume that the fake coin is known to be lighter than the genuine ones.

Decrease by factor 2 algorithm

Decrease by factor 3 algorithm

In the variable-size-decrease variation of decrease-and-

 conquer, instance sive reduction varies from one iteration to another
Examples:

- Euclid's algorithm for greatest common divisor
- partition-based algorithm for selection problem
- interpolation search
- some algorithms on binary search trees
- Nim and Nim-like games

Euclid's Algorithm

Euclid's algorithm is based on repeated applieation of equality

$$
\operatorname{gcd}(m, n)=\operatorname{gcd}(n, m \bmod n)
$$

Ex.: $\operatorname{gcd}(80,44)=\operatorname{gcd}(44,36)=\operatorname{gcd}(36,12)=\operatorname{gcd}(12,0)=12$

One can prove that the sive, measured by the second number, decreases at least by half after two consecutive iterations. Hence, $T(n) \in O(\log n)$

Selection Problem

Find the k-th smallest element in a list of n numbers

- $k=1$ or $k=n$
- median: $k=\lceil\mathrm{n} / 2\rceil$

Example: $4,1,10,9,7,12,8,2,15$ median =?
The median is used in statistics as a measure of an average value of a sample. In fact, it is a better (more robust) indicator than the mean, which is used for the same purpose.

Algorithms for the Selection Problem

The sorting-based algorithm: Sort and return the k-th element Efficiency (if sorted by mergesort): $\Theta(n \log n)$

A faster algorithm is based on the array partitioning:

s		
all are $\leq \mathrm{A}[s]$		all are $\geq \mathrm{A}[s]$

Assuming that the array is indexed from 0 to $n-1$ and s is a split position obtained by the array partitioning:
If $s=k-1$, the problem is solved;
if $s>k-1$, look for the k th smallest element in the left part;
if $s<k-1$, look for the $(k-s)$-th smallest element in the right part.
Note: The algorithm can simply continue until $s=k-1$.
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 4 O2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Two Partitioning Algorithms

There are two principal ways to partition an array:

- One-directional scan (Lomuto's partitioning algorithm)
- Two-directional scan (Hoare's partitioning algorithm)

Lomuto's Partitioning Algorithm

Scans the array lefit to right maintaining the array's partition into three contiguous sections: $<p, \geq p$, and unknown, where p is the value of the first element (the partition's pivot).

l		i	
p	$<p$	$>=p$	$?$

On each iteration the unknown section is decreased by one element until it's empty and a partition is achieved by exchanging the pivot with the element in the split position s.

A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 4 O2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Lomuto's Partitioning Algorithm

ALGORITHM LomutoPartition(A[l..r])

//Partitions subarray by Lomuto's algorithm using first element as pivot
//Input: A subarray $A[l . . r]$ of array $A[0 . . n-1]$, defined by its left and right // \quad indices l and $r(l \leq r)$
//Output: Partition of $A[l . . r]$ and the new position of the pivot $p \leftarrow A[l]$
$s \leftarrow l$
for $i \leftarrow l+1$ to r do
if $A[i]<p$
$s \leftarrow s+1 ; \quad \operatorname{swap}(A[s], A[i])$
$\operatorname{swap}(A[l], A[s])$
return s

Tracing Lomuto's Partioning Algorithm

s	i							
4	1	10	8	7	12	9	2	15
	s	i						
4	1	10	8	7	12	9	2	15
	s						i	
4	1	10	8	7	12	9	2	15
		s						i
4	1	2	8	7	12	9	10	15
		s						
4	1	2	8	7	12	9	10	15
2	1	4	8	7	12	9	10	15

A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 4 @2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Tracing Lomuto's Partioning Algorithm

s	i							
4	12	10	8	7	1	9	2	15
s					i			
4	1	10	8	7	12	9	2	15
	s					i		
4	1	10	8	7	12	9	2	15
	s						i	
4	1	2	8	7	12	9	10	15
		s						i
4	1	2	8	7	12	9	10	15
2	1	4	8	7	12	9	10	15

A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 4 ©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Quickselect (Partition-based Algorithm

ALGORITHM Quickselect(A[l..r],k)

//Solves the selection problem by recursive partition-based algorithm
$/ /$ Input: Subarray $A[l . . r]$ of array $A[0 . . n-1]$ of orderable elements and
// \quad integer $k(1 \leq k \leq r-l+1)$
//Output: The value of the k th smallest element in $A[l . . r]$
$s \leftarrow \operatorname{LomutoPartition}(A[l . . r])$ //or another partition algorithm
if $s=k-1$ return $A[s]$
else if $s>l+k-1$ Quickselect $(A[l . . s-1], k)$
else Quickselect ($A[s+1 . . r], k-1-s)$

Tracing Quickselect (Partition-based Algorithm)

Find the median of $4,1,10,9,7,12,8,2,15$
Here: $n=9, k=\lceil 9 / 2\rceil=5, k=1=4$
after 1st partitioning: $s=2<k-1=4$
after 2nd partitioning: $s=4=k-1$

0	1	2	3	4	5	6	7	8
4	1	10	8	7	12	9	2	15
2	1	4	8	7	12	9	10	15
			8	7	12	9	10	15
			7	8	12	9	10	15

The median is $A[4]=8$
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 4 @2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Efficiency of Quickselect

Average case (average split in the middle):

$$
C(n)=C(n / 2)+(n+1) \quad C(n) \in \Theta(n)
$$

Worst case (degenerate split): $C(n) \in \Theta\left(n^{2}\right)$

A more sophisticated choice of the pivot leads to a complicated algorithm with $\Theta(n)$ worst-case efficiency.

Interpolation Search (1)

Searches a sorted array similar to binary search but estimates location of the search key in $A[L . \sim r]$ by using its value ν Specifically, the values of the array's elements are assumed to grow linearly from $A[L]$ to $A[r]$ and the location of v is estimated as the x-coordinate of the point on the straight line through $(l, A[I])$ and $(r, A[r])$ whose y coordinate is v:

Interpolation Search (2)

After comparing v with $\mathrm{A}[x]$, the algorithm either stops (if they are equal) or proceeds by searching in the same manner among the elements indexed either between l and $x-1$ or between $x+1$ and r, depending on whether $A[x]$ is smaller or larger than v. Thus, the sive of the problem's instance is reduced, but we cannot tell a priori by how much

Analysis of Interpolation Search

- Efficiency
average case: $\mathrm{C}(n)<\log _{2} \log _{2} n+1$
worst case: $\mathrm{C}(n)=n$
- Preferable to binary search only for VERY large arrays and/or expensive comparisons
- Has a counterpart, the method of false position (requla fallui), for solving equations in one unknown (Sec. 12.4)

Binary Search Tree Algorithms

Several algorithms on BST requires recursive processing of just one of its subtrees, e.g.,

- Searching
- Insertion of a new key
- Binding the smallest (or the largest) key

Searching in Binary Search Tree

Algorithm BTS (x, v)
$/ /$ Searches for node with key equal to v in BST rooted at node x if $x=$ NIL return -1
else if $\nu=K(x)$ return x
else if $\nu<K(x)$ return BTS(lefi (x), $\nu)$ else return BTS(right (x), v)

Efficiency

> worst case: $\quad C(n)=n$
> average case: $C(n) \approx 2 \ln n \approx 1.39 \log _{2} n$

One-Pile Nim

There is a pile of n chips. Two players take turn by removing from the pile at least 1 and at most m chips. (The number of chips taken can vary from move to move.) The winner is the player that takes the last chip. Who wins the game - the player moving first or second, if both player make the best moves possible?

It's a good idea to analyze this and similar games "backwards", i.e., starting with $n=0,1,2, \ldots$

Partial Graph of One-Pile Nim with $m=4$

Vertex numbers indicate n, the number of chips in the pile. The losing position for the player to move are circled. Only winning moves from a winning position are shown (in bold).

Generalivation: The player moving first wins ifi n is not a multiple of 5 (more generally, $m+1$); the winning move is to take $n \bmod 5(n \bmod (m+1))$ chips on every move.
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 4 @2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

[^0]: A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 4 ©2012 Pearson

[^1]: A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 4 @2012 Pearson

