Chapter 3: Brute Force

A straightforward approach, usually based directly on the problem's statement and definitions of the concepts involved

Examples:

1. Computing $a^{\mu}(a>0, n$ a nonnegative integer)
2. Computing n !
3. Multiplying two matrices
4. Searching for a key of a given value in a list
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 3 O2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

3.1 Brute-Force Sorting Algorithm

Selection Sort Scan the array to find its smallest element and swap it with the first element. Then, starting with the second element, scan the elements to the right of it to find the smallest among them and swap it with the second elements. Generally, on pass $i(0 \leq i \leq n-2)$, find the smallest element in $A[i, n-1]$ and swap it with $A[i]$:
$A[0] \leq \ldots . . \leq A[i-1] \mid A_{\uparrow}[i], \ldots . ., A\left[\min _{\uparrow}\right], . ., A[n-1]$ in their final positions

Example: $7 \quad 325$

Analysis of Selection Sort

ALGORITHM SelectionSort(A[0..n-1])

//Sorts a given array by selection sort

 //Input: An array $A[0 . . n-1]$ of orderable elements //Output: Array $A[0 . . n-1]$ sorted in ascending order for $i \leftarrow 0$ to $n-2$ do```
min}\leftarrow
for }j\leftarrowi+1\mathrm{ to }n-1\mathrm{ do
 if }A[j]<A[min] min \leftarrow
swap A[i] and A[min]
```

Time efficiency:

## Space efficiency:

A sorting algorithm is called stable if it preserves the relative order of any two equal elements in its input

### 3.2 Brute-Force String Matching

- pattern: a string of $m$ characters to search for
- text: a (longer) string of $n$ characters to search in
- problem: find a substring in the text that matches the pattern


## Brute-force algorithm

Step 1 Align pattern at beginning of text
Step 2 Moving from left to right, compare each character of pattern to the corresponding character in text until

- all characters are found to match (successful search); or
- a mismatch is detected

Step 3 While pattern is not found and the text is not yet exhausted, realign pattern one position to the right and repeat Step 2
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 3 O2012 Pearson

## Examples of Brute-Force String Matching

Text:
Pattern:

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Text:

$$
10010101101001100101111010
$$

Pattern: 001011

## Pseudocode and Efiniciency

ALGORITHM BruteForceStringMatch(T[0..n - 1], $P[0 . . m-1])$
//Implements brute-force string matching
//Input: An array $T[0 . . n-1]$ of $n$ characters representing a text and $/ / \quad$ an array $P[0 . . m-1]$ of $m$ characters representing a pattern //Output: The index of the first character in the text that starts a // matching substring or -1 if the search is unsuccessful for $i \leftarrow 0$ to $n-m$ do
$j \leftarrow 0$
while $j<m$ and $P[j]=T[i+j]$ do

$$
j \leftarrow j+1
$$

if $j=m$ return $i$
return -1

## Efifiency:

A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 3 @2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

# Brute-Fiorce Polynomial Evaluation 

Problem: Find the value of polynomial

$$
p(x)=a_{n n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x^{1}+a_{0}
$$

at a point $x=x_{0}$
Brute-force algorithm
$p \leftarrow 0.0$
for $i \leftarrow n$ downto 0 do
power $\leftarrow 1$
for $j \leftarrow 1$ to $i$ do //compute $x^{i}$ power $\leftarrow$ power * $x$
$p \leftarrow p+a[i] *$ power
return $p$
Efficiency:
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 3 @2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

## Polynomial Evaluation: Improvement

We can do better by evaluating from right to left:

$$
p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x^{1}+a_{0}
$$

## Better brute-force algorithm

$p \leftarrow a[0]$
power $\leftarrow 1$
for $i \leftarrow 1$ to $n$ do

$$
\begin{aligned}
& \text { power } \leftarrow \text { power * } x \\
& p \leftarrow p+a[i] * \text { power }
\end{aligned}
$$

return $p$
Efficiency:
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 3 @2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

### 3.3 Closest-Pair Problem

## Find the two closest points in a set of $n$ points (in the twodimensional Cartesian plane).

## Brute-force algorithm

Compute the distance between every pair of distinct points and return the indexes of the points for which the distance is the smallest.
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 3 @2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

## Closest-Pair Brute-Force Algorithm (cont.)

## ALGORITHM BruteForceClosestPoints( $P$ )

//Input: A list $P$ of $n(n \geq 2)$ points $P_{1}=\left(x_{1}, y_{1}\right), \ldots, P_{n}=\left(x_{n}, y_{n}\right)$ //Output: Indices index 1 and index 2 of the closest pair of points
$d \min \leftarrow \infty$
for $i \leftarrow 1$ to $n-1$ do for $j \leftarrow i+1$ to $n$ do
$d \leftarrow \operatorname{sqrt}\left(\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}\right) / / s q r t$ is the square root function
if $d<d$ min
$d \min \leftarrow d$; index $1 \leftarrow i$; index $2 \leftarrow j$
return index 1 ,index 2

Efficiency:

How to make it faster?
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 3 ©2012 Pearson

## Brute-Force Strengths and Weaknesses

- Strengths
- wide applicability
- simplicity
- yields reasonable algorithms for some important problems (e.g., matrix multiplication, sorting, searching, string matching)
- Weaknesses
- rarely yields efficient algorithms
- some brute-force algorithms are unacceptably slow
- not as constructive as some other design techniques


### 3.4 Exhaustive Search

A brute force solution to a problem involving search for an element with a special property, usually among combinatorial objects such as permutations, combinations, or subsets of a set.

## Method:

- generate a list of all potential solutions to the problem in a systematic manner (see algorithms in Sec. 5.4)
- evaluate potential solutions one by one, disqualifying infeasible ones and, for an optimivation problem, keeping track of the best one found so far
- when search ends, announce the solution(s) found
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 3 O2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

## Example 1: Traveling Salesman Problem

- Given $n$ cities with known distances between each pair, find the shortest tour that passes through all the cities exactly once before returning to the starting city
- Alternatively: Find shortest Hamitionian circuit in a weighted connected graph
- Example:



# TSP by Exhaustive Search 

## Tour


$\mathrm{a} \longrightarrow \mathrm{b} \rightarrow \mathrm{d} \rightarrow \mathrm{c} \rightarrow \mathrm{a}$
$\mathrm{a} \longrightarrow \mathrm{c} \longrightarrow \mathrm{b} \longrightarrow \mathrm{d} \longrightarrow \mathrm{a}$
$\mathrm{a} \longrightarrow \mathrm{c} \longrightarrow \mathrm{d} \longrightarrow \mathrm{b} \longrightarrow \mathrm{a}$
$\mathrm{a} \rightarrow \mathrm{d} \longrightarrow \mathrm{b} \longrightarrow \mathrm{c} \rightarrow \mathrm{a}$
$\mathrm{a} \longrightarrow \mathrm{d} \longrightarrow \mathrm{c} \longrightarrow \mathrm{b} \rightarrow \mathrm{a}$

## Cost

$2+3+7+5=17$
$2+4+7+8=21$
$8+3+4+5=20$
$8+7+4+2=21$
$5+4+3+8=20$
$5+7+3+2=17$


More tours?

## Less tours?

## Efifiency:

A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 3 O2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

## Example 2: Knapsack Problem

## Given $n$ items:

- weights: $w_{1} \quad w_{2} \ldots w_{n}$
- values: $\nu_{1} \quad \nu_{2} \ldots \nu_{n}$
- a knapsack of capacity W

Find most valuable subset of the items that fit into the knapsack

Example: Knapsack capacity $W=16$ item weight value

| 1 | 2 | $\$ 20$ |
| ---: | ---: | ---: |
| 2 | 5 | $\$ 30$ |
| 3 | 10 | $\$ 50$ |
| 4 | 5 | $\$ 10$ |

A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 302012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

## Knapsack Problem by Exhaustive Search

## Subset Total weight Total value <br> \{1\} <br> \{2\} <br> 5 <br> 10 <br> 5 <br> 7 <br> 12 <br> 7 <br> 15 <br> 10 <br> 15 <br> 17 <br> 12 <br> $\{1,3,4\}$ <br> $\{2,3,4\}$ <br> $\{1,2,3,4\}$ <br> 17 <br> 20 <br> 22 <br> \$20 <br> $\$ 30$ <br> $\$ 50$ <br> $\$ 10$ <br> $\$ 50$ <br> $\$ 70$ <br> $\$ 30$ <br> $\$ 80$ <br> $\$ 40$ <br> $\$ 60$ <br> not feasible <br> $\$ 60$ <br> not feasible <br> not feasible <br> not feasible <br> Efficiency:

A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 3 O2012 Pearson

## Example 3: The Assignment Problem

There are $n$ people who need to be assigned to $n$ jobs, one person per job. The cost of assigning person $i$ to $j o b j$ is $C[i, j]$. Find an assignment that minimizes the total cost.

|  | Job 1 Job 2 Job 3 Job |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Person 1 | 9 | 2 | 7 | 8 |
| Person 2 | 6 | 4 | 3 | 7 |
| Person 3 | 5 | 8 | 1 | 8 |
| Person 4 | 7 | 6 | 9 | 4 |

Algorithmic Plan: Generate all legitimate assignments, compute their costs, and select the cheapest one.
How many assignments are there?
Pose the problem as the one about a cost matrix:
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 3 O2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

# Assignment Problem by Exhaustive Search 

$$
C=\begin{array}{llll}
9 & 2 & 7 & 8 \\
6 & 4 & 3 & 7 \\
5 & 8 & 1 & 8 \\
7 & 6 & 9 & 4
\end{array}
$$

Assignment (col.\#ts)
1, 2, 3, 4
1, 2, 4, 3
1, 3, 2, 4
1, 3, 4, 2
1, 4, 2, 3
1, 4, 3, 2

Total Cost
$9+4+1+4=18$
$9+4+8+9=30$
$9+3+8+4=24$
$9+3+8+6=26$
$9+7+8+9=33$
$9+7+1+6=23$
etc.
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 3 @2012 Pearson

## Final Comments on Exhaustive Search

- Exhaustive-search algorithms run in a realistic amount of time only on very small instances
- In some cases, there are much better alternatives!
- Euler circuits
- shortest paths
- minimum spanning tree
- assignment problem
- In many cases, exhaustive search or its variation is the only known way to get exact solution


# 3.5 Graph Traversal Algorithms 

Many problems require processing all graph vertices (and edges) in systematic fashion

## Graph traversal algorithms:

- Depth-first search (DIS)
- Breadth-first search (BRS)
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 3 @2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

## Depth-First Search (DFS)

- Visits graph's vertices by always moving away from last visited vertex to unvisited one, backtracks if no adjacent unvisited vertex is available.
- Uses a stack
- a vertex is pushed onto the stack when it's reached for the filist time
- a vertex is popped off the stack when it becomes a dead end, i.e., when there is no adjacent unvisited vertex
- "Redraws" graph in tree-like fashion (with tree edges and back edges for undirected graph)


## Pseudocode of DES

## ALGORITHM $D F S(G)$

//Implements a depth-first search traversal of a given graph
//Input: Graph $G=\langle V, E\rangle$
//Output: Graph $G$ with its vertices marked with consecutive integers
//in the order they've been first encountered by the DFS traversal mark each vertex in $V$ with 0 as a mark of being "unvisited"
count $\leftarrow 0$
for each vertex $v$ in $V$ do
if $v$ is marked with 0
$d f s(v)$
$d f s(v)$
//visits recursively all the unvisited vertices connected to vertex $v$ by a path //and numbers them in the order they are encountered
//via global variable count
count $\leftarrow$ count +1 ; mark $v$ with count
for each vertex $w$ in $V$ adjacent to $v$ do
if $w$ is marked with 0

$$
d f s(w)
$$

## Example: DAS traversal of undirected graph



## DAS traversal stack: <br> DRS tree:

A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 3 O2012 Pearson

## Example: DFS traversal of undirected graph



DHS traversal stack:


## DIIS forest:


A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 3 @2012 Pearson

- DAS can be implemented with graphs represented as:
- adjacency matricess $0\left(V^{2}\right)$
- adjacency lists: $\Theta(|V|+|\Phi|)$
- Yields two distinct ordering of vertices:
- order in which vertices are first encountered (pushed onto stack)
- order in which vertices become dead-ends (popped ofi stack)
- Applications:
- checking connectivity, finding connected components
- checking acyclicity A vertex of a connected graph is said to be its
- finding articulation points articulation point if its removal with all edges
- searching state-space of problems for solution (AI)
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 302012 Pearson


## Breadth-first search (BIS)

- Visits graph vertices by moving across to all the neighbors of last visited vertex
- Instead of a stack, BIS uses a queue
- Similar to level-by-level tree traversal
- "Redraws" graph in tree-like fashion (with tree edges and cross edges for undirected graph)


## Pseudocode of BIIS

## ALGORITHM $B F S(G)$

//Implements a breadth-first search traversal of a given graph //Input: Graph $G=\langle V, E\rangle$
//Output: Graph $G$ with its vertices marked with consecutive integers //in the order they have been visited by the BFS traversal mark each vertex in $V$ with 0 as a mark of being "unvisited"
count $\leftarrow 0$
for each vertex $v$ in $V$ do
if $v$ is marked with 0

$$
b f s(v)
$$

bfs(v)
//visits all the unvisited vertices connected to vertex $v$ by a path
//and assigns them the numbers in the order they are visited //via global variable count
count $\leftarrow$ count $+1 ;$ mark $v$ with count and initialize a queue with $v$ while the queue is not empty do
for each vertex $w$ in $V$ adjacent to the front vertex do
if $w$ is marked with 0
count $\leftarrow$ count $+1 ; \quad$ mark $w$ with count
add $w$ to the queue
remove the front vertex from the queue

## Example of BISS traversal of undirected graph



BIS traversal queue:

## BIIS tree:

A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 3 @2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

## Example: BIS traversal of undirected graph



## BIIS forest:

## BIIS traversal queue:

$$
\begin{aligned}
& a_{1} c_{2} d_{3} e_{4} f_{5} b_{6} \\
& g_{7} h_{8} j_{9} i_{10}
\end{aligned}
$$


A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 3 @2012 Pearson

## Notes on BIES

- BINS has same efficiency as DAS and can be implemented with graphs represented as:
- adjacency matrices: $\Theta\left(V^{2}\right)$
- adjacency lists: $\Theta(|V|+|\mathbb{E}|)$
- Yields single ordering of vertices (order added/deleted from queue is the same)
- Applications: same as DFS, but can also find paths from a vertex to all other vertices with the smallest number of edges

