1.1 What is an algorithm?

An aldorithm is a sequence of unambiguous instructions for solving a problem, i.e., for obtaining a required output for any legitimate input in a finite amount of time.

problem

algorithm

A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 1 ©2012

Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Euclid's Algorithm

Problem: Find ged (m, n), the greatest common divisor of two nonnegative, not both zero integers m and n
Examples: $\operatorname{gcd}(60,24)=12, \quad \operatorname{gcd}(60,0)=60, \quad \operatorname{gcd}(0,0)=$?

Euclid's algorithm is based on repeated application of equality

$$
\operatorname{gcd}(m, n)=\operatorname{gcd}(n, m \bmod n)
$$

until the second number becomes 0 , which makes the problem trivial.

Example: $\operatorname{gcd}(60,24)=\operatorname{gcd}(24,12)=\operatorname{gcd}(12,0)=12$
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 1 ©2012

Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Two descriptions of Euclid's algorithm

Step 1 If $n=0$, return m and stop; otherwise go to Step 2
Step 2 Divide m by n and assign the value fo the remainder to r Step 3 Assign the value of n to m and the value of r to n. Go to Step 1.
while $n \neq 0$ do
$r \leftarrow m \bmod n$
$m \leftarrow n$
$n \leftarrow r$
return m
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 1 O2012

Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Other methods for computing ged (m, n)

Consecutive integer checking algorithm

Step 1 Assign the value of $\min \{m, n\}$ to t
Step 2 Divide m by t. If the remainder is 0 , go to Step 3; otherwise, go to Step 4
Step 3 Divide n by t. If the remainder is 0 , return t and stop; otherwise, go to Step 4
Step 4 Decrease t by 1 and go to Step 2
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 1 ©2012

Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Other methods for $\operatorname{ged}(m, n)$ [cont.]

Middle-school procedure

Step 1 Find the prime factorization of m
Step 2 Find the prime factorivation of n
Step 3 Find all the common prime factors
Step 4 Compute the product of all the common prime factors and return it as $\operatorname{gcd}(m, n)$

Is this an algorithm?
Example:

$$
\begin{aligned}
60 & =2 \cdot 2 \cdot 3 \cdot 5 \\
24 & =2 \cdot 2 \cdot 2 \cdot 3 \\
\operatorname{gcd}(60,24) & =2 \cdot 2 \cdot 3=12
\end{aligned}
$$

A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 1 ©2012

Sieve of Eratosthenes

Input: Integer $n \geq 2$
Output: List of primes less than or equal to n
for $p \leftarrow 2$ to n do $A[p] \leftarrow p$
for $p \leftarrow 2$ to $\lfloor\sqrt{n}\rfloor \mathrm{do}$
if $A[p] \neq 0 / / p$ hasn't been previously eliminated from the list $j \leftarrow p^{*} p$
while $j \leq n$ do
$A[j] \leftarrow 0 \mathrm{l} / \mathrm{mark}$ element as eliminated $j \leftarrow j+p$

Dxample: 234567891011121314151617181920
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 1 O2012

Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

1.2 Algorithm design and analysis process

- Understanding the Problem
- Ascertaining the Capabilities of the Computational Device
- Sequential Computer Architecture: Random-access machine (RAM) Model \rightarrow Sequential algorithins
- Parallel Computer Architecture \rightarrow parallel algorithms
- Choosing between Exact and Approximate Problem Solving

Algorithm design and analysis process (Cont.)

- Selecting Algorithm Design Techniques
- Designing an Algorithm and Data Structures
- Methods of Specifying an Algorithm
- Pseudocode
- flowchart
- Proving an Algorithm's Correctness
- Coding an Algorithm

- Theoretical importance

- the core of computer science
- Practical importance
- A practitioner's toolkit of known algorithms
- Framework for designing and analyuing algorithms for new problems
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 1 ©2012

Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

- How to design algorithms

- How to analyze algorithm efficiency
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 1 @2012

Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Algorithm design techniques/strategies

- Brute force
- Divide and conquer
- Decrease and conquer
- Transform and conquer
- Space and time tradeofis
- Greedy approach
- Dynamic programming
- Iterative improvement
- Backtracking
- Branch and bound
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 1 ©2012

Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Analysis of algorithms

- How good is the algorithm?
- time efficiency
- space efiliciency
- Does there exist a better algorithm?
- lower bounds
- optimality
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 1 ©2012

Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

1.3 Important problem types

- Sorting

- Searching
- String processing

Example: searching for a given word in a text

- Graph problems

Examples: the traveling salesman problem and the graph-coloring problem

- Combinatorial problems

To find a combinatorial object-such as a permutation, a combination, or a subset-that satisfies certain constraints
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 1 ©2012

Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Important problem types (Cont.)

- Geometric problems

Examples: the closest-pair problem and the convexhull problem

- Numerical problems

Examples: solving equations and systems of equations, computing definite integrals, evaluating functions
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 1 ©2012

Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

1.4 Fundamental data structures

\square list

- array
- linked list
- string
- stack

- queue
- priority queue
\square graph
\square tree
- set and dictionary

A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 1 ©2012

Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

