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Chapter 11: A Hierarchy of
Formal Languages and Automata

1. Recursive and Recursively Enumerable Languages
 Languages That Are Not Recursively Enumerable
A Language That Is Not Recursively Enumerable
A Language That Is Recursively Enumerable But Not
Recursive
2. Unrestricted Grammars

3. Context-Sensitive Grammars and Languages

« Context-Sensitive Languages and Linear Bounded
Automata

« Relation Between Recursive and Context-Sensitive
Languages

4. The Chomsky Hierarchy



Learning Objectives
At the conclusion of the chapter, the student will be able to:

Explain the difference between recursive and recursively enumerable
languages

Describe the type of productions in an unrestricted grammar
Identify the types of languages generated by unrestricted grammars
Describe the type of productions in a context sensitive grammar

Give a sequence of derivations to generate a string using the
productions in a context sensitive grammar

Identify the types of languages generated by context-sensitive grammars
Construct a context-sensitive grammar to generate a particular language

Describe the structure and components of the Chomsky hierarchy
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Recursive and Recursively Enumerable
Languages

 Alanguage Lis recursively enumerable if there exists a
Turing machine that accepts it (as we have previously stated,

rejected strings cause the machine to either not halt or halt
in a nonfinal state)

 Alanguage L is recursive if there exists a Turing machine that

accepts it and is guaranteed to halt on every valid input
string

* |n other words, a language is recursive if and only if there
exists a membership algorithm for it



Languages That Are Not Recursively
Enumerable

* Theorem 11.2 states that, for any nonempty alphabet,
there exist languages not recursively enumerable

* One proof involves a technique called diagonalization,
which can be used to show that, in a sense, there are
fewer Turing Machines than there are languages

* More explicitly, Theorem 11.3 describes the existence of a
recursively enumerable language whose complement is
not recursively enumerable

* Furthermore, Theorem 11.5 concludes that the family of
recursive languages is a proper subset of the family of
recursively enumerable languages



Theorem 11.1: Let S be an infinite countable
set. Then its power set 2° is not countable

Let S = {s1, s2, s3, ...}. Then any element of 25 can be represented by
a sequence of 0’s and 1’s. For examples:

1234567389
the set {s2,s3,s6} = ((pO V000D —°
the set {sl, s3, s5} = lU\DfOOO')G -

\/Now, suppose that 25 were countable

and 25 ={t1, €2, 13, ...} Diagonalization
Pick t = 00L1... vV 4 @”0 0 0 0
/-"‘—\__
Thent ¢ 2° v, oo 1 @ 0 0 0 ...
—
A contradiction! 41 1 1 0
/—————\ —_—
So, 25 is not countable Ve 1 1 0 @ 1
— S~ — -
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Unrestricted Grammars

An unrestricted grammar has essentially no restrictions on
the form of its productions:

Any variables and terminals on the left side, in any order
Any variables and terminals on the right side, in any order

The only restriction is that A 1s not allowed as the left side of a
production

A sample unrestricted grammar has productions

5 - SB =5, Das. b 15
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Unrestricted Grammars and Recursively
Enumerable Languages

* Theorem 11.6: Any language generated by an unrestricted
grammar 1s recursively enumerable

 Theorem 11.7: For every recursively enumerable language L,
there exists an unrestricted grammar G that generates L

* These two theorems establish the result that unrestricted
grammars generate exactly the family of recursively
enumerable languages, the largest family of languages that
can be generated or recognized algorithmically



Context-Sensitive Grammars

In a context-sensitive grammar, the only restriction 1s that, for
any production, length of the right side 1s at least as large as
the length of the left side

Example 11.2 introduces a sample context-sensitive grammar
with productions

S > abc | aAbc Derive the string aabbcc
RN RS
Ab — bA NN
— / S=aAbc —_>0_\G\\ \0\” c o
W = abAc /;-——“
bB — Bb > abBbec _9(7\0\\013\\0< C
AB — aa|aaA = aBbbcc —I —
— aabbcc —/—7 0\ U\‘”\O 5_(: -

/ h =) 0\6\/|§7b (%Scct



Characteristics of Context-Sensitive Grammars

* An important characteristic of context-sensitive grammars
is that they are noncontracting, in the sense that in any
derivation, the length of successive sentential forms can
never decrease

* These grammars are called context-sensitive because 1t 1s
possible to specify that variables may only be replaced in
certain contexts

* For instance, in the grammar of Example 11.2, variable A
can only be replaced if 1t is followed by either b or ¢

Ab — bA
Ac — Bbcc



Context-Sensitive Languages

* Alanguage L is context-sensitive if there 1s a context-
sensitive grammar G, such that either L = L(G) or L = L(G)
Vi

* The empty string 1s included, because by definition, a

context-sensitive grammar can never generate a language
containing the empty string

* As aresult, 1t can be concluded that the family of context-
free languages 1s a subset of the family of context-sensitive
languages

he language { a"b"c™: n > 1 } 1s context-sensitive, since it 1s
generated by the grammar in Example 11.2

bbb //QM\L\O\OLCQ



Context-Sensitive Languages and Linear
Bounded Automata

* Theorem 11.8 states that, for every context-sensitive
language L not including A, there 1s a linear bounded
automaton that recognizes L

* Theorem 11.9 states that, if a language L 1s accepted by a
linear bounded automaton M, then there 1s a context-
sensitive grammar that generates L

* These two theorems establish the result that context-
sensitive grammars generate exactly the family of languages
accepted by linear bounded automata, the context-sensitive
languages



Relationship Between Recursive and Context-
Sensitive Languages

* Theorem 11.10 states that every context-sensitive language is
recursive

* Theorem 11.11 maintains that some recursive languages are
not context-sensitive

* These two theorems help establish a hierarchical relationship
among the various classes of automata and languages:

* Linear bounded automata are less powerful than Turing
machines

* Linear bounded automata are more powerful than pushdown
automata



The Chomsky Hierarchy

* The linguist Noam Chomsky summarized the relationship
between language families by classifying them into four
language typ%s, type 0 to type 3

* This classification, which became known as the Chomsky
Hierarchy, 1s 1llustrated as below

Recursively enumerable language

Context-Sensitive Languages \/

Context-free language

4
Regular language \/




An Extended Hierarchy

* We have studied additional language families and their relationships to those
in the Chomsky Hierarchy

* By including deterministic context-free languages and recursive languages,
we obtain the extended hierarchy as below

Lo, &
RE .
Recursive languages

Turing machine that
halts on any inputs.

e Deterministic

context-free languages
DPDA
—

v




A Closer Look at the Family of Context-
Free Languages

The following figure 1llustrates the relationships among various
subsets of the family of context-free languages: regular (Lyg), linear
(L, ), deterministic context-free (Lp-p), and nondeterministic
context-free (Lp)

Linear languages
Linear grammars




