CS 4410

Automata, Computability, and Formal Language

Dr. Xuejun Liang

Spring 2019

Chapter 9

Turing Machines

1. The Standard Turing Machine

- Definition of a Turing Machine
- Turing Machines as Language Accepters
- Turing Machines as Transducers
- Combining Turing Machines for Complicated Tasks
- 3. Turing's Thesis

Learning Objectives

At the conclusion of the chapter, the student will be able to:

- Describe the components of a standard Turing machine
- State whether an input string is accepted by a Turing machine
- Construct a Turing machine to accept a specific language
- Trace the operation of a Turing machine transducer given a sample input string
- Construct a Turing machine to compute a simple function
- State Turing's thesis and discuss the circumstantial evidence supporting it

Definition of a Turing Machine

Definition 9.1: A **Turing machine** M is defined by $M=(Q, \Sigma, \Gamma, \delta, q_0, \Box, F)$

where

Q is a finite set of internal states,

 Σ is the **input alphabet**,

 Γ is a finite set of symbols called the **tape alphabet**,

δ: Q×Γ→Q×Γ×{L, R} is the **transition function**,

 $q_0 \in Q$ is the **initial state**,

 $\Box \in \Gamma$ is a special symbol called **blank**,

 $F \subseteq Q$ is the set of **final states**

 $\delta: Q \times \Gamma \xrightarrow{} Q \times \Gamma \times \{L, R\}$

Assume $\Sigma \subseteq \Gamma - \{\Box\}$

Configuration: tape symbols, state, tape head position

Halt: it reaches to a configuration for which δ is not defined

Computation: The sequence of configurations leading to a halt state.

Examples

Example 9.2: $Q = \{q_0, q_1\}, \Sigma = \{a, b\}, \Gamma = \{a, b, \Box\}, F = \{q_1\}$

Examples

Example 9.3: $Q = \{q_0, q_1\}, \Sigma = \{a, b\}, \Gamma = \{a, b, \Box\}, F = \{\}$

This machine with input string ab runs forever —in an infinite loopwith the read-write head moving alternately right and left, but making no modifications to the tape

Standard Turing Machine

- 1. One tape unbounded in both directions
- 2. Deterministic: At most one move for each configuration
- 3. No special input file and No special output device

Configuration (Instantaneous description): x_1qx_2 (or $a_1a_2...a_{k-1}qa_ka_{k+1}...a_n$) Move from one configuration to another: $abq_1cd \mid - abeq_2d$ (if $\delta(q_1, c) = (q_2, e, R)$) $abq_1cd \mid - aq_2bed$ (if $\delta(q_1, c) = (q_2, e, L)$)

Example 9.4, 9.5: Configurations and moves in Example 9.2 $q_0aa \quad bq_0a \quad bbq_0\Box \quad bq_1b$ $q_0aa \mid -bq_0a \mid -bbq_0\Box \mid -bq_1b$

Turing Machines as Language Accepters

Definition 9.3: Let M=(Q, Σ , Γ , δ , q_0 , \Box , F) be a Turing machine. Then the language accepted by M is

 $L(M) = \{ w \in \Sigma^+ : q_0 w \mid \stackrel{*}{-} x_1 q_f x_2 \text{ for some } g_f \in F, x_1, x_2 \in \Gamma^* \}$

Note: input string w causes the machine to halt in a final state

Example 9.6: For $\Sigma = \{0, 1\}$, design a Turing machine M such that $L(M) = L(00^*)$ $Q = \{q_0, q_1, q_2\}, F = \{q_2\}, \Gamma = \{0, 1, \Box\},$

Example 9.7: For $\Sigma = \{0, 1\}$, design a Turing machine that accept $L = \{a^n b^n : n \ge 1\}$ $Q = \{q_0, q_1, q_2, q_3, q_4\}, F = \{q_4\}, \Gamma = \{a, b, x, y, \Box\}$

Example 9.8: For $\Sigma = \{a, b, c\}$, design a Turing machine that accept $L = \{a^n b^n c^n : n \ge 1\}$ $Q = \{q_0, q_1, q_2, q_3, q_4\}, F = \{q_4\}, \Gamma = \{a, b, c, x, y, z, \Box\}$

Turing Machines as Transducers

Definition 9.3: A function f with domain D is said to be Turing-computable or just computable if there exists some Turing machine $M=(Q,\Sigma,\Gamma,\delta,q_0,\Box,F)$ such that for all $w \in D$

$$q_0 w \models q_f f(w), q_f \in F$$

Example 9.9: Given two positive integers x and y, design a Turing machine that computes x+y.

Example 9.10: Design a Turing machine that copies strings of 1's. More precisely, find a machine that perform the computation $q_0 w | \stackrel{*}{=} q_f ww$ for any $w \in \{1\}^+$

Example 9.11: Let x and y be two positive integers represented in unary notation. Construct a Turing machine that will halt in a final state q_y if $x \ge y$, and that will halt in a non-final state q_n if x < y.

$$q_0 w(x) 0 w(y) \stackrel{*}{\models} q_y w(x) 0 w(y), \quad if \ x \ge y,$$
$$q_0 w(x) 0 w(y) \stackrel{*}{\models} q_n w(x) 0 w(y), \quad if \ x < y.$$

Combining Turing Machines for Complicated Tasks

Example 9.12: Design a Turing machine that computes the function

$$f(x, y) = x + y, \quad if \ x \ge y,$$

= 0, $if \ x < y.$ x,y Comparer
C Eraser
E

$$q_{C,0}w(x)0w(y) \stackrel{*}{\models} q_{A,0}w(x)0w(y), \quad if \ x \ge y,$$

$$q_{C,0}w(x)0w(y) \stackrel{*}{\models} q_{E,0}w(x)0w(y), \quad if \ x < y.$$

$$q_{A,0} \mathbf{w}(\mathbf{x}) \mathbf{0} \mathbf{w}(\mathbf{y}) \stackrel{*}{\vdash} q_{A,f} \mathbf{w}(\mathbf{x}) \mathbf{w}(\mathbf{y}) \mathbf{0}$$
$$q_{E,0} \mathbf{w}(\mathbf{x}) \mathbf{0} \mathbf{w}(\mathbf{y}) \stackrel{*}{\vdash} q_{E,f} \mathbf{0}$$

Combining Turing Machines for Complicated Tasks (Cont.)

Example 9.13: Consider the instruction: If a then q_i else q_k .

$$\begin{split} &\delta(q_i,a) = (q_{j0},a,R) \quad \text{for all } q_i \in Q, \\ &\delta(q_i,b) = (q_{k0},b,R) \quad \text{for all } q_i \in Q \text{ and all } b \in \Gamma \text{-}\{a\}, \\ &\delta(q_{j0},c) = (q_j,c,L) \quad \text{for all } c \in \Gamma, \\ &\delta(q_{k0},a) = (q_k,c,L) \quad \text{for all } c \in \Gamma. \end{split}$$

Example 9.14: Design a Turing machine that multiplies two positive integers in unary notation.

Turing's Thesis

Turing thesis (a hypothesis): Any computation that can be carried out by mechanical means can be performed by some Turing machine.

A computation is mechanical if and only if it can be performed by some Turing machine.

- 1. Anything that can be done on any existing digital computer can also be done by a Turing machine.
- 2. No one has yet been able to suggest a problem, solvable by what we intuitively consider an algorithm, for which a Turing machine program cannot be written.
- 3. Alternative models have been proposed for mechanical computation, but none of them are more powerful than the Turing machine model.

Turing's Thesis (Cont.)

Definition 9.3: An algorithm for a function $f: D \rightarrow R$ is a Turing machine M, which given as input any $d \in D$ on its tape, eventually halts with the correct answer f(d) on its tape. Specially, we can require that $q_0 d \mid_{\overline{M}}^* q_f f(d), q_f \in F$

for all $d \in D$