CS 4410

Automata, Computability, and Formal Language

Dr. Xuejun Liang

Spring 2019

Chapter 9

Turing Machines

1. The Standard Turing Machine

- Definition of a Turing Machine
- Turing Machines as Language Accepters
- Turing Machines as Transducers

2. Combining Turing Machines for Complicated Tasks
3. Turing's Thesis

Learning Objectives

At the conclusion of the chapter, the student will be able to:

- Describe the components of a standard Turing machine
- State whether an input string is accepted by a Turing machine
- Construct a Turing machine to accept a specific language
- Trace the operation of a Turing machine transducer given a sample input string
- Construct a Turing machine to compute a simple function
- State Turing's thesis and discuss the circumstantial evidence supporting it

Definition of a Turing Machine

Definition 9.1: A Turing machine M is defined by

$$
\mathrm{M}=\left(\mathrm{Q}, \Sigma, \Gamma, \delta, \mathrm{q}_{0}, \square, \mathrm{~F}\right)
$$

where
Q is a finite set of internal states,
Σ is the input alphabet,
Γ is a finite set of symbols called the tape alphabet,
$\delta: \mathrm{Q} \times \Gamma \rightarrow \mathrm{Q} \times \Gamma \times\{\mathrm{L}, \mathrm{R}\}$ is the transition function,
$\mathrm{q}_{0} \in \mathrm{Q}$ is the initial state,
$\square \in \Gamma$ is a special symbol called blank,
$\mathrm{F} \subseteq \mathrm{Q}$ is the set of final states
$\delta: \mathrm{Q} \times \Gamma \rightarrow \mathrm{Q} \times \Gamma \times\{\mathrm{L}, \mathrm{R}\} \quad$ Assume $\Sigma \subseteq \Gamma-\{\square\}$
Configuration: tape symbols, state, tape head position
Halt: it reaches to a configuration for which δ is not defined
Computation: The sequence of configurations leading to a halt state.

Examples

Example 9.1: $\delta\left(\mathrm{q}_{0}, \mathrm{a}\right)=\left(\mathrm{q}_{1}, \mathrm{~d}, \mathrm{R}\right)$

$$
\mathrm{q}_{0} \mathrm{abc} \mid-\mathrm{dq}_{1} \mathrm{bc}
$$

Example 9.2: $\mathrm{Q}=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\}, \Sigma=\{\mathrm{a}, \mathrm{b}\}, \Gamma=\{\mathrm{a}, \mathrm{b}, \square\}, \mathrm{F}=\left\{\mathrm{q}_{1}\right\}$

$$
\begin{aligned}
& \delta\left(\mathrm{q}_{0}, \mathrm{a}\right)=\left(\mathrm{q}_{0}, \mathrm{~b}, \mathrm{R}\right) \\
& \delta\left(\mathrm{q}_{0}, \mathrm{~b}\right)=\left(\mathrm{q}_{0}, \mathrm{~b}, \mathrm{R}\right) \\
& \delta\left(\mathrm{q}_{0}, \square\right)=\left(\mathrm{q}_{1}, \square, \mathrm{~L}\right)
\end{aligned}
$$

$$
\begin{aligned}
& a, b, R \\
& b, b, R
\end{aligned}
$$

$$
\mathrm{q}_{0} \mathrm{aa} \square\left|-\mathrm{bq}_{0} \mathrm{a} \square\right|-\mathrm{bbq}_{0} \square \mid-\mathrm{bq}_{1} \mathrm{~b} \square
$$

Examples

Example 9.3: $\mathrm{Q}=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\}, \Sigma=\{\mathrm{a}, \mathrm{b}\}, \Gamma=\{\mathrm{a}, \mathrm{b}, \square\}, \mathrm{F}=\{ \}$

$$
\begin{aligned}
& \delta\left(\mathrm{q}_{0}, \mathrm{a}\right)=\left(\mathrm{q}_{1}, \mathrm{a}, \mathrm{R}\right) \\
& \delta\left(\mathrm{q}_{0}, \mathrm{~b}\right)=\left(\mathrm{q}_{1}, \mathrm{~b}, \mathrm{R}\right) \\
& \delta\left(\mathrm{q}_{0}, \square\right)=\left(\mathrm{q}_{1}, \square, \mathrm{R}\right) \\
& \delta\left(\mathrm{q}_{1}, \mathrm{a}\right)=\left(\mathrm{q}_{0}, \mathrm{a}, \mathrm{~L}\right) \\
& \delta\left(\mathrm{q}_{1}, \mathrm{~b}\right)=\left(\mathrm{q}_{0}, \mathrm{~b}, \mathrm{~L}\right) \\
& \delta\left(\mathrm{q}_{1}, \square\right)=\left(\mathrm{q}_{0}, \square, \mathrm{~L}\right)
\end{aligned}
$$

FIGURE 9.5

This machine with input string ab runs forever -in an infinite loopwith the read-write head moving alternately right and left, but making no modifications to the tape

Standard Turing Machine

1. One tape unbounded in both directions
2. Deterministic: At most one move for each configuration
3. No special input file and No special output device

Configuration (Instantaneous description):

$$
x_{1} q x_{2}\left(\text { or } a_{1} a_{2} \ldots a_{k-1} q a_{k} a_{k+1} \ldots a_{n}\right)
$$

Move from one configuration to another:

$$
\begin{array}{ll}
\operatorname{abq}_{1} c d-\operatorname{abeq}_{2} d & \left(\text { if } \delta\left(q_{1}, c\right)=\left(q_{2}, e, R\right)\right) \\
\operatorname{abq}_{1} c d-q_{2} \text { bed } & \left(\text { if } \delta\left(q_{1}, c\right)=\left(q_{2}, e, L\right)\right)
\end{array}
$$

Example 9.4, 9.5: Configurations and moves in Example 9.2

$$
\begin{aligned}
& \mathrm{q}_{0} \mathrm{aa} \quad \mathrm{bq}_{0} \mathrm{a} \quad \mathrm{bbq}_{0} \square \quad \mathrm{bq}_{1} \mathrm{~b} \\
& \mathrm{q}_{0} \mathrm{aa}\left|-\mathrm{bq}_{0} \mathrm{a}\right|-\mathrm{bq}_{0} \square \mid-\mathrm{bq}_{1} \mathrm{~b}
\end{aligned}
$$

Turing Machines as Language Accepters

Definition 9.3: Let $\mathrm{M}=\left(\mathrm{Q}, \Sigma, \Gamma, \delta, \mathrm{q}_{0}, \square, \mathrm{~F}\right)$ be a Turing machine. Then the language accepted by M is

$$
\mathrm{L}(\mathrm{M})=\left\{\mathrm{w} \in \Sigma^{+}:\left.\mathrm{q}_{0} \mathrm{w}\right|^{*} \mathrm{x}_{1} \mathrm{q}_{\mathrm{f}} \mathrm{x}_{2} \text { for some } \mathrm{g}_{\mathrm{f}} \in \mathrm{~F}, \mathrm{x}_{1}, \mathrm{x}_{2} \in \Gamma^{*}\right\}
$$

Note: input string w causes the machine to halt in a final state
Example 9.6: For $\Sigma=\{0,1\}$, design a Turing machine M such that $\mathrm{L}(\mathrm{M})=\mathrm{L}\left(00^{*}\right)$

$$
\mathrm{Q}=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}, \mathrm{q}_{2}\right\}, \mathrm{F}=\left\{\mathrm{q}_{2}\right\}, \Gamma=\{0,1, \square\},
$$

Example 9.7: For $\Sigma=\{0,1\}$, design a Turing machine that accept

$$
\begin{gathered}
\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{~b}^{\mathrm{n}}: \mathrm{n} \geq 1\right\} \\
\mathrm{Q}=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{3}, \mathrm{q}_{4}\right\}, \mathrm{F}=\left\{\mathrm{q}_{4}\right\}, \Gamma=\{\mathrm{a}, \mathrm{~b}, \mathrm{x}, \mathrm{y}, \square\}
\end{gathered}
$$

Example 9.8: For $\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$, design a Turing machine that accept

$$
\begin{gathered}
\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}^{\mathrm{n}} \mathrm{c}^{\mathrm{n}}}: \mathrm{n} \geq 1\right\} \\
\mathrm{Q}=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{3}, \mathrm{q}_{4}\right\}, \mathrm{F}=\left\{\mathrm{q}_{4}\right\}, \Gamma=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{x}, \mathrm{y}, \mathrm{z}, \square\}
\end{gathered}
$$

Turing Machines as Transducers

Definition 9.3: A function f with domain D is said to be Turing-computable or just computable if there exists some Turing machine $\mathrm{M}=\left(\mathrm{Q}, \Sigma, \Gamma, \delta, \mathrm{q}_{0}, \square, \mathrm{~F}\right)$ such that for all $\mathrm{w} \in \mathrm{D}$

$$
\left.\mathrm{q}_{0} \mathrm{w}\right|^{*} \mathrm{q}_{\mathrm{f}} \mathrm{f}(\mathrm{w}), \mathrm{q}_{\mathrm{f}} \in \mathrm{~F}
$$

Example 9.9: Given two positive integers x and y , design a Turing machine that computes $\mathrm{x}+\mathrm{y}$.

Example 9.10: Design a Turing machine that copies strings of 1's. More precisely, find a machine that perform the computation $\left.\mathrm{q}_{0} \mathrm{w}\right|^{*} \mathrm{q}_{\mathrm{f}} \mathrm{ww}$ for any $\mathrm{w} \in\{1\}^{+}$

Example 9.11: Let x and y be two positive integers represented in unary notation. Construct a Turing machine that will halt in a final state q_{y} if $x \geq y$, and that will halt in a non-final state q_{n} if $\mathrm{x}<\mathrm{y}$.

$$
\begin{array}{ll}
\left.q_{0} w(x) 0 w(y)\right|^{*}-q_{y} \mathrm{w}(\mathrm{x}) 0 \mathrm{w}(\mathrm{y}), & \text { if } x \geq y \\
\left.q_{0} w(x) 0 w(y)\right|^{*}-q_{n} \mathrm{w}(\mathrm{x}) 0 \mathrm{w}(\mathrm{y}), & \text { if } x<y .
\end{array}
$$

Combining Turing Machines for Complicated Tasks

Example 9.12: Design a Turing machine that computes the function

$$
\begin{array}{ll}
f(x, y)=x+y, & \text { if } x \geq y, \\
=0, & \text { if } x<y .
\end{array}
$$

Combining Turing Machines for Complicated Tasks (Cont.)

Example 9.13: Consider the instruction: If a then q_{j} else q_{k}.

$$
\begin{array}{ll}
\delta\left(q_{i}, a\right)=\left(q_{j}, a, R\right) & \text { for all } q_{i} \in Q, \\
\delta\left(q_{i}, b\right)=\left(q_{k}, b, R\right) & \text { for all } q_{i} \in Q \text { and all } b \in \Gamma-\{a\}, \\
\delta\left(q_{j}, c\right)=\left(q_{j}, c, L\right) & \text { for all } c \in \Gamma, \\
\delta\left(q_{k},, a\right)=\left(q_{k}, c, L\right) & \text { for all } c \in \Gamma .
\end{array}
$$

Consider subprogram

Example 9.14: Design a Turing machine that multiplies two positive integers in unary notation.

Turing's Thesis

Turing thesis (a hypothesis): Any computation that can be carried out by mechanical means can be performed by some Turing machine.

A computation is mechanical if and only if it can be performed by some Turing machine.

1. Anything that can be done on any existing digital computer can also be done by a Turing machine.
2. No one has yet been able to suggest a problem, solvable by what we intuitively consider an algorithm, for which a Turing machine program cannot be written.
3. Alternative models have been proposed for mechanical computation, but none of them are more powerful than the Turing machine model.

Turing's Thesis (Cont.)

Definition 9.3: An algorithm for a function $\mathrm{f}: \mathrm{D} \rightarrow \mathrm{R}$ is a Turing machine M , which given as input any $\mathrm{d} \in \mathrm{D}$ on its tape, eventually halts with the correct answer f(d) on its tape. Specially, we can require that

$$
\mathrm{q}_{0} \mathrm{~d} \left\lvert\, \frac{*}{\mathrm{M}} \mathrm{q}_{\mathrm{f}} \mathrm{f}(\mathrm{~d})\right., \quad \mathrm{q}_{\mathrm{f}} \in \mathrm{~F}
$$

for all $d \in D$

