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Chapter 8

Properties of Context-Free Languages
1. Two Pumping Lemmas

• A Pumping Lemma for Context-Free Languages

• A Pumping Lemma for Linear Language

2. Closure Properties and Decision Algorithms 

for Context-Free Languages
• Closure of Context-Free Languages

• Some Decidable Properties of Context-Free Languages



Learning Objectives
At the conclusion of the chapter, the student will be able to:

• Apply the pumping lemma to show that a language is not context-

free

• State the closure properties applicable to context-free languages

• Prove that context-free languages are closed under union, 

concatenation, and star-closure

• Prove that context-free languages are not closed under either 

intersection or complementation

• Describe a membership algorithm for context-free languages

• Describe an algorithm to determine if a context-free language is 

empty

• Describe an algorithm to determine if a context-free language is 

infinite
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A Pumping Lemma for 

Context-Free Languages

Theorem 8.1: (A Pumping Lemma for Context-Free Languages) Let L be

an infinite context-free language. Then there exists some positive integer 

m such that any w  L with |w|  m can be decomposed as

w=uvxyz, with |vxy|  m and |vy|  1, 

such that

uvixyiz  L, for all i=0, 1, 2, …

Example 8.1: Show that the language L={anbncn : n0} is not context-free.

Example 8.2: The language L={ww : w{a,b}*} is not context-free.

Example 8.3: The language L={an!: n0} is not context-free.

Example 8.4: The language L={anbj: n=j2} is not context-free.
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A Pumping Lemma for 

Linear Languages

Theorem 8.2: (A Pumping Lemma for Linear Languages) Let L be an 

infinite linear language. Then there exists some positive integer m such 

that any w  L with |w|  m can be decomposed as

w=uvxyz, with |uvyz|  m and |vy|  1, 

such that

uvixyiz  L, for all i=0, 1, 2, …

Example 8.6: The language L={w : na(w)=nb(w)} is not linear.

Definition 8.1: A context-free language is said to be linear if there exists

a linear context-free grammar G such that L=L(G) 

Example 8.5: The language L={anbn : n0} is linear.
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Closure of Context-Free Languages

Theorem 8.3: The family of context-free language is closed under 

union, concatenation, and star-closure.

Theorem 8.4: The family of context-free language is not closed under 

intersection and complementation.

Theorem 8.5: Let L1 be a context-free language and L2 be a regular

language. Then L1L2 is context-free.

Example 8.7: The language L={anbn : n0, n100} is context-free.

Example 8.8: Show that the language 

L={w  {a,b,c)* : na(w)=nb(w)=nc(w)}

is not context-free.



Proof of Closure under Union

• Assume that L1 and L2 are generated by the context-free grammars G1 = 

(V1, T1, S1, P1) and G2 = (V2, T2, S2, P2)

• Without loss of generality, assume that the sets V1 and V2 are disjoint

• Create a new variable S3 which is not in V1  V2 

• Construct a new grammar G3 = (V3, T3, S3, P3) so that

– V3 = V1  V2  { S3 }

– T3 = T1  T2

– P3 = P1  P2

• Add to P3 a production that allows the new start symbol to derive either of 

the start symbols for L1 and L2 

– S3 → S1 | S2 

• Clearly, G3 is context-free and generates the union of L1 and L2 , thus 

completing the proof



Proof of Closure under Concatenation

• Assume that L1 and L2 are generated by the context-free grammars G1

= (V1, T1, S1, P1) and G2 = (V2, T2, S2, P2)

• Without loss of generality, assume that the sets V1 and V2 are disjoint

• Create a new variable S4 which is not in V1  V2 

• Construct a new grammar G4 = (V4, T4, S4, P4) so that

– V4 = V1  V2  { S4 }

– T4 = T1  T2

– P4 = P1  P2

• Add to P4 a production that allows the new start symbol to derive the 

concatenation of the start symbols for L1 and L2 

– S4 → S1S2 

• Clearly, G4 is context-free and generates the concatenation of L1 and L2 

, thus completing the proof



Proof of Closure under Star-Closure

• Assume that L1 is generated by the context-free grammars G1 = 

(V1, T1, S1, P1)

• Create a new variable S5 which is not in V1 

• Construct a new grammar G5 = (V5, T5, S5, P5) so that

– V5 = V1  { S5 }

– T5 = T1

– P5 = P1

• Add to P5 a production that allows the new start symbol S5 to derive 

the repetition of the start symbol for L1 any number of times

– S5 → S1S5 | 

• Clearly, G5 is context-free and generates the star-closure of L1, thus 

completing the proof



No Closure under Intersection

• Unlike regular languages, the intersection of two context-free 

languages L1 and L2 does not necessarily produce a context-

free language

• As a counterexample, consider the context-free languages

L1 = { anbncm: n ≥ 0, m ≥ 0 }

L2 = { anbmcm: n ≥ 0, m ≥ 0 }

• However, the intersection L1 and L2 is the language

L3 = { anbncn: n ≥ 0 }

• L3 can be shown not be context-free by applying the pumping 

lemma for context-free languages



A Membership Algorithm for Context-

Free Languages

• The combination of Theorems 5.2 and 6.5 confirms the 

existence of a membership algorithm for context-free 

languages

• By Theorem 5.2, exhaustive parsing is guaranteed to give 

the correct result for any context-free grammar that 

contains neither -productions nor unit-productions

• By Theorem 6.5, such a grammar can always be produced 

if the language does not include 

• Alternatively, a npda to accept the language can be 

constructed as established by Theorem 7.1
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Some Decidable Properties of 

Context-Free Languages

Theorem 8.6: Given a context-free grammar G=(V,T,S,P), there exists 

an algorithm for deciding whether or not L(G) is empty.

Theorem 8.7: Given a context-free grammar G=(V,T,S,P), there exists 

an algorithm for deciding whether or not L(G) is infinite.

• For simplicity, assume that  is not in L(G)

• Apply the algorithm for removing useless symbols and productions

• If the start symbol is found to be useless, then L(G) is empty;

• Otherwise, L(G) contains at least one string

• Apply the algorithms for removing -productions, unit-

productions, and useless productions

• If G has a variable A for which there is a derivation that allows 

A to produce a sentential form xAy, then L(G) is infinite

• Otherwise, L(G) is finite



Determining Whether Two Context-

Free Languages are Equal

• Given two context-free grammars G1 and G2, is there an 

algorithm to determine if L(G1) = L(G2)?

• If the languages are finite, the answer can be found by 

performing a string-by-string comparison

• However, for general context-free languages, no 

algorithm exists to determine equality


