CS 4410

Automata, Computability, and Formal Language

Dr. Xuejun Liang

Spring 2019

Chapter 6

Simplification of Context-Free Grammars and Normal Forms

1. Methods for Transforming Grammars

- A Useful Substitution Rule
- Removing Useless Productions
- Removing λ-Productions
- Removing Unit-Productions

2. Two Important Normal Forms

- Chomsky Normal Form
- Greibach Normal Form

3. A Membership Algorithm for Context-Free Grammars*

Learning Objectives

At the conclusion of the chapter, the student will be able to:

- Simplify a context-free grammar by removing useless productions
- Simplify a context-free grammar by removing λ-productions
- Simplify a context-free grammar by removing unit-productions
- Determine whether or not a context-free grammar is in Chomsky normal form
- Transform a context-free grammar into an equivalent grammar in Chomsky normal form
- Determine whether or not a context-free grammar is in Greibach normal form
- Transform a context-free grammar into an equivalent grammar in Greibach normal form

A Useful Substitution Rule

Theorem 6.1: Let $\mathrm{G}=(\mathrm{V}, \mathrm{T}, \mathrm{S}, \mathrm{P})$ be a context-free grammar. Suppose that P contains a production of the form

$$
\mathrm{A} \rightarrow \mathrm{x}_{1} \mathrm{Bx}_{2} .
$$

Assume that A and B are different variables and that

$$
\mathrm{B} \rightarrow \mathrm{y}_{1}\left|\mathrm{y}_{2}\right| \ldots \mid \mathrm{y}_{\mathrm{n}}
$$

is the set of all productions in P which have B as the left side. Let
$\widehat{G}=(V, T, S, \widehat{P})$ be the grammar in which \widehat{P} is constructed by deleting

$$
\mathrm{A} \rightarrow \mathrm{x}_{1} \mathrm{Bx}_{2}
$$

from P , and adding to it

$$
\mathrm{A} \rightarrow \mathrm{x}_{1} \mathrm{y}_{1} \mathrm{x}_{2}\left|\mathrm{x}_{1} \mathrm{y}_{2} \mathrm{x}_{2}\right| \ldots \mid \mathrm{x}_{1} \mathrm{y}_{\mathrm{n}} \mathrm{x}_{2}
$$

Then

$$
L(\widehat{G})=L(G)
$$

Example 6.1: Consider $\mathrm{G}=(\{\mathrm{A}, \mathrm{B}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \mathrm{A}, \mathrm{P})$ with productions

$$
\begin{aligned}
& A \rightarrow a|a a A| a b B c, \\
& B \rightarrow a b b A \mid b
\end{aligned}
$$

Substitute the variable B.

Removing Useless Productions

Definition 6.1: Let $\mathrm{G}=(\mathrm{V}, \mathrm{T}, \mathrm{S}, \mathrm{P})$ be a context-free grammar. A variable $A \in V$ is said to be useful if and only if there is at least one $w \in L(G)$ such that

$$
S \stackrel{*}{=}>x A y \stackrel{*}{=}>w,
$$

with $\mathrm{x}, \mathrm{y} \in(\mathrm{V} \cup \mathrm{T})^{*}$. In words, a variable is useful if and only if it occurs in at least one derivation. A variable that is not useful is called useless. A production is useless if it involves any useless variable.
Example 6.2, 6.3:
$\mathrm{S} \rightarrow \mathrm{A}$,
$\mathrm{S} \rightarrow \mathrm{aS}|\mathrm{A}| \mathrm{C}$,
Eliminate useless symbols $\mathrm{A} \rightarrow \mathrm{aA} \mid \lambda$,
$\mathrm{A} \rightarrow \mathrm{a}$,
and productions
$\mathrm{B} \rightarrow \mathrm{bA}$.
B \rightarrow aa,
$\mathrm{C} \rightarrow \mathrm{aCb}$.

Theorem 6.2: Let $\mathrm{G}=(\mathrm{V}, \mathrm{T}, \mathrm{S}, \mathrm{P})$ be a context-free grammar. Then there exists an equivalent grammar $\widehat{G}=(\widehat{V}, \widehat{T}, S, \widehat{P})$ that does not contain any useless variables and productions.

Removing Useless Productions

Let $\mathrm{G}=(\mathrm{V}, \mathrm{T}, \mathrm{S}, \mathrm{P})$ be a context-free grammar. Compute

$$
\mathrm{V}_{1}=\left\{\mathrm{A} \in \mathrm{~V}: \mathrm{A} \stackrel{*}{=}>\mathrm{w} \in \mathrm{~T}^{*}\right\}
$$

1. Set V_{1} to \varnothing.
2. Repeat the following step until no more variables are added to V_{1}.

For every $\mathrm{A} \in \mathrm{V}$ for which P has production of the form $A \rightarrow x_{1} x_{2} \ldots x_{n}$ with all x_{i} in $V_{1} \cup T$
Add A to V_{1}.
Let $\mathrm{G}=(\mathrm{V}, \mathrm{T}, \mathrm{S}, \mathrm{P})$ be a context-free grammar. Compute

$$
V_{2}=\left\{A \in V: S \stackrel{*}{\Rightarrow}>x A y \in(V \cup T)^{*}\right\} .
$$

1. $\operatorname{Set} V_{2}=\{S\}$.
2. Repeat the following step until no more variables are added to V_{2}.

For every $\mathrm{B} \in \mathrm{V}$ for which P has production of the form

$$
A \rightarrow x B y \text { with } x, y \in(T \cup V)^{*} \text { and } A \in V_{2}
$$

Add A to V_{2}.

Removing λ-Productions

Definition 6.2: Any production of a context-free grammar of the form $\mathrm{A}=>\lambda$ is called a λ-production. Any variable A for which the derivation A $\stackrel{*}{=}>\lambda$ is possible is called nullable.
$\begin{array}{ll}\text { Example 6.4: } & S \rightarrow a S_{1} b, \\ \begin{array}{l}\text { Eliminate } \lambda \text {-productions } \\ \text { The language } \mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}} \cdot \mathrm{n}>1\right)\end{array} & S_{1} \rightarrow a S_{1} b \mid \lambda\end{array} \Longleftrightarrow \begin{aligned} & S \rightarrow a S_{1} b \mid a b, \\ & S_{1} \rightarrow a S_{1} b \mid a b\end{aligned}$
Theorem 6.3: Let G be a context-free grammar with λ not in $L(G)$. Then there exists an equivalent grammar G having no λ-productions.

Example 6.5:
Eliminate
λ-productions

$$
\begin{array}{ll}
S \rightarrow A B a C, \\
A \rightarrow B C, \\
B \rightarrow b \mid \lambda, \\
C \rightarrow D \mid \lambda, \\
D \rightarrow d . & \quad \\
& \rightarrow A B a C|B a C| A a C \\
& |A B a| a C|A a| B a \mid a, \\
A \rightarrow B|C| B C, \\
B \rightarrow b, \\
C \rightarrow D, \\
D \rightarrow d .
\end{array}
$$

Removing λ-Productions

Let $G=(V, T, S, P)$ be a context-free grammar. Compute

$$
\mathrm{V}_{\mathrm{N}}=\{\mathrm{A} \in \mathrm{~V}: \mathrm{A} \stackrel{*}{=}>\lambda\}
$$

1. For all production $\mathrm{A} \rightarrow \lambda$, put A in V_{N}.
2. Repeat the following step until no further variables are added to V_{N}.

For all productions

$$
\mathrm{B} \rightarrow \mathrm{~A}_{1} \mathrm{~A}_{2} \ldots \mathrm{~A}_{\mathrm{n}},
$$

where $A_{1}, A_{2}, \ldots, A_{n}$ are in V_{N}, put B into V_{N}.

Replace all nullable variables with λ in all possible combinations Example: Assume B and $\mathrm{C} \in \mathrm{V}_{\mathrm{N}}$. Then

1. A $\rightarrow \mathrm{ByC}$ is replaced by $\mathrm{A} \rightarrow \mathrm{y}|\mathrm{yC}| \mathrm{By}$
2. $\mathrm{A} \rightarrow \mathrm{BC}$ is replaced by $\mathrm{A} \rightarrow \mathrm{C} \mid \mathrm{B}$

Removing Unit-Productions

Definition 6.3: Any production of a context-free grammar of the form $\mathrm{A}=>\mathrm{B}$ where $\mathrm{A}, \mathrm{B} \in \mathrm{V}$ is called a unit-production.

Theorem 6.4: Let $\mathrm{G}=(\mathrm{V}, \mathrm{T}, \mathrm{S}, \mathrm{P})$ be any context-free grammar without λ-productions. Then there exists a context-free grammar $\widehat{G}=(\widehat{V}, \widehat{T}, S, \widehat{P})$ that does not have any unit-productions and that is equivalent to G.
Steps: 1. Put all non-unit productions of P into \hat{P}
2. For $\mathrm{A} \stackrel{*}{=} \mathrm{B}$, add to \widehat{P}

$$
\mathrm{A} \rightarrow \mathrm{y}_{1}\left|\mathrm{y}_{2}\right| \ldots \mid \mathrm{y}_{\mathrm{n}},
$$

where $\mathrm{B} \rightarrow \mathrm{y}_{1}\left|\mathrm{y}_{2}\right| \ldots \mid \mathrm{y}_{\mathrm{n}}$ in \hat{P}

Example 6.6:
Eliminate unit-productions

$$
\begin{aligned}
& S \rightarrow A a \mid B, \\
& B \rightarrow A \mid b b, \\
& A \rightarrow a|b c| B
\end{aligned}
$$

$$
S \rightarrow a|b c| b b \mid A a,
$$

$$
A \rightarrow a|b b| b c,
$$

$$
B \rightarrow a|b b| b c,
$$

Removing λ-Productions Removing Unit-Productions Removing Useless Productions

Theorem 6.5: Let L be a context-free language that does not contain λ. Then there exists a context-free grammar that generate L and that does not have any useless productions, λ-productions, or unit-productions.

Steps: 1. Remove λ-productions
2. Remove unit-productions
3. Remove useless productions

Chomsky Normal Form

Definition 6.4: A context-free grammar is in Chomsky normal form if all productions are of form

$$
\begin{aligned}
& \mathrm{A} \rightarrow \mathrm{BC} \text {, or } \\
& \mathrm{A} \rightarrow \mathrm{a}
\end{aligned}
$$

where $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are in V , and a is in T .

Example 6.7: In Chomsky normal form

$$
\begin{aligned}
& S \rightarrow A S, \\
& A \rightarrow S A \mid b
\end{aligned}
$$

Not in Chomsky normal form

$$
\begin{aligned}
& S \rightarrow A S \mid A A S, \\
& A \rightarrow S A \mid a a
\end{aligned}
$$

Theorem 6.6: Any context-free grammar $\mathrm{G}=(\mathrm{V}, \mathrm{T}, \mathrm{S}, \mathrm{P})$ with $\lambda \notin \mathrm{L}(\mathrm{G})$ has an equivalent grammar $\hat{G}=(\hat{V}, \hat{T}, S, \hat{P})$ in Chomsky normal form.

Example 6.8:
Convert the grammar to
Chomsky normal form

$$
\begin{aligned}
& S \rightarrow A B a \\
& A \rightarrow a a b \\
& B \rightarrow A c
\end{aligned}
$$

Greibach Normal Form

Definition 6.5: A context-free grammar is in Greibach normal form if all productions are of form

$$
\mathrm{A} \rightarrow \mathrm{ax}
$$

where a is in T and x is in V^{*}.
Example 6.9: In Greibach normal form Not in Greibach normal form

$$
\begin{aligned}
& S \rightarrow a A B|b B B| b B \\
& A \rightarrow a A|b B| b \\
& B \rightarrow b
\end{aligned}
$$

$$
\begin{aligned}
& S \rightarrow A B \\
& A \rightarrow a A|b B| b, \\
& B \rightarrow b
\end{aligned}
$$

Example 6.10: Convert the grammar $S \rightarrow a b S b \mid a a$ into Greibach normal form

Theorem 6.7: Any context-free grammar $\mathrm{G}=(\mathrm{V}, \mathrm{T}, \mathrm{S}, \mathrm{P})$ with $\lambda \notin \mathrm{L}(\mathrm{G})$ has an equivalent grammar $\hat{G}=(\hat{V}, \hat{T}, S, \hat{P})$ in Greibach normal form.

