CS 4410

Automata, Computability, and Formal Language

Dr. Xuejun Liang

Spring 2019

Chapter 6

Simplification of Context-Free Grammars and Normal Forms

- 1. Methods for Transforming Grammars
 - A Useful Substitution Rule
 - Removing Useless Productions
 - Removing λ-Productions
 - Removing Unit-Productions
- 2. Two Important Normal Forms
 - Chomsky Normal Form
 - Greibach Normal Form
- 3. A Membership Algorithm for Context-Free Grammars*

Learning Objectives

At the conclusion of the chapter, the student will be able to:

- Simplify a context-free grammar by removing useless productions
- Simplify a context-free grammar by removing λ -productions
- Simplify a context-free grammar by removing unit-productions
- Determine whether or not a context-free grammar is in Chomsky normal form
- Transform a context-free grammar into an equivalent grammar in Chomsky normal form
- Determine whether or not a context-free grammar is in Greibach normal form
- Transform a context-free grammar into an equivalent grammar in Greibach normal form

A Useful Substitution Rule

Theorem 6.1: Let G=(V, T, S, P) be a context-free grammar. Suppose that P contains a production of the form

 $A \rightarrow x_1 B x_2$.

Assume that A and B are different variables and that

 $\mathbf{B} \rightarrow \mathbf{y}_1 \mid \mathbf{y}_2 \mid \ldots \mid \mathbf{y}_n$

is the set of all productions in P which have B as the left side. Let $\hat{G} = (V, T, S, \hat{P})$ be the grammar in which \hat{P} is constructed by deleting $A \rightarrow x_1 B x_2$

from P, and adding to it

 $A \rightarrow x_1 y_1 x_2 \mid x_1 y_2 x_2 \mid \dots \mid x_1 y_n x_2$

Then

$$L(\widehat{G}) = L(G)$$

Example 6.1: Consider G=({A, B}, {a, b, c}, A, P) with productions $A \rightarrow a \mid aaA \mid abBc,$ $B \rightarrow abbA \mid b$ Substitute the variable B.

Removing Useless Productions

Definition 6.1: Let G=(V, T, S, P) be a context-free grammar. A variable $A \in V$ is said to be useful if and only if there is at least one $w \in L(G)$ such that

$$S \stackrel{*}{=} xAy \stackrel{*}{=} w,$$

with x, $y \in (V \cup T)^*$. In words, a variable is useful if and only if it occurs in at least one derivation. A variable that is not useful is called useless. A production is useless if it involves any useless variable.

Example 6.2, 6.3:	$S \rightarrow A$,	$S \rightarrow aS A C,$
Eliminate useless symbols	$A \rightarrow aA \mid \lambda$,	$A \rightarrow a$,
and productions	$B \rightarrow bA.$	B → aa,
		$C \rightarrow aCb.$

Theorem 6.2: Let G=(V, T, S, P) be a context-free grammar. Then there exists an equivalent grammar $\hat{G} = (\hat{V}, \hat{T}, S, \hat{P})$ that does not contain any useless variables and productions.

Removing Useless Productions

Let G=(V, T, S, P) be a context-free grammar. Compute $V_1 = \{A \in V : A \stackrel{*}{=} w \in T^*\}.$

- 1. Set V_1 to \emptyset .
- 2. Repeat the following step until no more variables are added to V_1 . For every $A \in V$ for which P has production of the form $A \rightarrow x_1 x_2 \dots x_n$ with all x_i in $V_1 \cup T$ Add A to V_1 .
- Let G=(V, T, S, P) be a context-free grammar. Compute $V_2 = \{A \in V : S \stackrel{*}{=} > xAy \in (V \cup T)^*\}.$
- 1. Set $V_2 = \{S\}$.
- 2. Repeat the following step until no more variables are added to V₂. For every $B \in V$ for which P has production of the form $A \rightarrow xBy$ with x, $y \in (T \cup V)^*$ and $A \in V_2$ Add A to V₂.

Removing λ -Productions

Definition 6.2: Any production of a context-free grammar of the form $A => \lambda$ is called a λ -production. Any variable A for which the derivation $A \stackrel{*}{=}> \lambda$ is possible is called nullable.

Example 6.4: Eliminate λ -productions The language L={aⁿbⁿ: n≥1}

Theorem 6.3: Let G be a context-free grammar with λ not in L(G). Then there exists an equivalent grammar \hat{G} having no λ -productions.

Example 6.5: Eliminate λ -productions	$S \rightarrow ABaC$,	$S \rightarrow ABaC \mid BaC \mid AaC$
	$A \rightarrow BC$,	ABa aC Aa Ba a,
	$B \rightarrow b \mid \lambda$,	$A \to B \mid C \mid BC,$
	$C \rightarrow D \mid \lambda,$	$B \rightarrow b$,
	$D \rightarrow d$.	$C \rightarrow D$,
		$D \rightarrow d$.

Removing λ -Productions

Let G=(V, T, S, P) be a context-free grammar. Compute $V_N = \{A \in V : A \stackrel{*}{=} \lambda\}.$

- 1. For all production $A \rightarrow \lambda$, put A in V_N.
- 2. Repeat the following step until no further variables are added to V_N . For all productions

$$B \rightarrow A_1 A_2 \dots A_n$$
,
where A_1, A_2, \dots, A_n are in V_N , put B into V_N .

Replace all nullable variables with λ in all possible combinations Example: Assume B and C \in V_N. Then

- 1. $A \rightarrow ByC$ is replaced by $A \rightarrow y | yC | By$
- 2. $A \rightarrow BC$ is replaced by $A \rightarrow C \mid B$

Removing Unit-Productions

Definition 6.3: Any production of a context-free grammar of the form A => B where $A, B \in V$ is called a unit-production.

Theorem 6.4: Let G=(V, T, S, P) be any context-free grammar without λ -productions. Then there exists a context-free grammar $\hat{G} = (\hat{V}, \hat{T}, S, \hat{P})$ that does not have any unit-productions and that is equivalent to G.

Steps: 1. Put all non-unit productions of P into P 2. For A $\stackrel{*}{=} B$, add to \widehat{P} $A \rightarrow y_1 | y_2 | \dots | y_n$, where $B \rightarrow y_1 | y_2 | \dots | y_n$ in \widehat{P} Example 6.6: $S \rightarrow Aa | B$, $S \rightarrow a | bc | bb | Aa$, Eliminate $B \rightarrow A | bb$, unit-productions $A \rightarrow a | bc | B$ $B \rightarrow a | bb | bc$, $B \rightarrow a | bb | bc$,

Removing λ-Productions Removing Unit-Productions Removing Useless Productions

Theorem 6.5: Let L be a context-free language that does not contain λ . Then there exists a context-free grammar that generate L and that does not have any useless productions, λ -productions, or unit-productions.

Steps: 1. Remove λ -productions

- 2. Remove unit-productions
- 3. Remove useless productions

Chomsky Normal Form

Definition 6.4: A context-free grammar is in **Chomsky normal form** if all productions are of form

$$A \rightarrow BC$$
, or $A \rightarrow a$

where A, B, C are in V, and a is in T.

Example 6.7: In Chomsky normal formNot in Chomsky normal form $S \rightarrow AS$, $S \rightarrow AS \mid AAS$, $A \rightarrow SA \mid b$ $A \rightarrow SA \mid aa$

Theorem 6.6: Any context-free grammar G=(V, T, S, P) with $\lambda \notin L(G)$ has an equivalent grammar $\hat{G} = (\hat{V}, \hat{T}, S, \hat{P})$ in Chomsky normal form.

Example 6.8: $S \rightarrow ABa$,Convert the grammar to $A \rightarrow aab$ Chomsky normal form $B \rightarrow Ac$

Greibach Normal Form

Definition 6.5: A context-free grammar is in Greibach normal form if all productions are of form

$$A \rightarrow ax$$

where a is in T and x is in V^* .

Example 6.9: In Greibach normal form Not in Greibach normal form

 $S \rightarrow aAB \mid bBB \mid bB$, $A \rightarrow aA \mid bB \mid b$, $B \rightarrow b$

$$S \to AB,$$

$$A \to aA \mid bB \mid b,$$

$$B \to b$$

Example 6.10: Convert the grammar $S \rightarrow abSb \mid aa$ into Greibach normal form

Theorem 6.7: Any context-free grammar G = (V, T, S, P) with $\lambda \notin L(G)$ has an equivalent grammar $\hat{G} = (\hat{V}, \hat{T}, S, \hat{P})$ in Greibach normal form.