CS 4410

Automata, Computability, and Formal Language

Dr. Xuejun Liang

Spring 2019

Chapter 4

Properties of Regular Languages

1. Closure Properties of Regular Languages

- Closure under Simple Set Operations
- Closure under Other Operations

2. Elementary Questions about Regular Languages
3. Identifying Nonregular Languages

- Using the Pigeonhole Principle
- A pumping Lemma

Learning Objectives

At the conclusion of the chapter, the student will be able to:

- State the closure properties applicable to regular languages
- Prove that regular languages are closed under union, concatenation, star-closure, complementation, and intersection
- Prove that regular languages are closed under reversal
- Describe a membership algorithm for regular languages
- Describe an algorithm to determine if a regular language is empty, finite, or infinite
- Describe an algorithm to determine if two regular languages are equal
- Apply the pumping lemma to show that a language is not regular

Closure under Simple Set Operations

Theorem 4.1: If L, L_{1} and L_{2} are regular languages, then so are $L_{1} \cup L_{2}, L_{1} \cap L_{2}, L_{1} L_{2}, \bar{L}$, and L^{*}. We say that the family of regular language is closed under union, intersection, concatenation, complementation, and star-closure.

Example 4.1: Show that if L_{1} and L_{2} are regular, so is $L_{1}-L_{2}$.
Theorem 4.2: The family of regular languages is closed under reversal.

Closure under Other Operations

Definition 4.1: Suppose Σ and Γ are alphabets. Then a function $\mathrm{h}: \Sigma^{*} \rightarrow \Gamma^{*}$ is called a homomorphism, if

$$
h\left(a_{1} a_{2} \ldots a_{n}\right)=h\left(a_{1}\right) h\left(a_{2}\right) \ldots h\left(a_{n}\right) \quad(\text { or } h(u v)=h(u) h(v))
$$

If L is a language on Σ, then its image is defined as

$$
h(L)=\{h(w): w \in L\}
$$

Example 4.2: $\Sigma=\{\mathrm{a}, \mathrm{b}\}$ and $\Gamma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$. A homomorphism h is defined as $h(a)=a b$ and $h(b)=b b c . L=\{a a, a b a\} . h(L)=$?

Example 4.3: $\Sigma=\{\mathrm{a}, \mathrm{b}\}$ and $\Gamma=\{\mathrm{b}, \mathrm{c}, \mathrm{d}\}$. A homomorphism h is defined as $h(a)=d b c c$ and $h(b)=b d c$.
$\mathrm{r}=\left(\mathrm{a}+\mathrm{b}^{*}\right)(\mathrm{aa})^{*}$ and $\mathrm{L}=\mathrm{L}(\mathrm{r})$. Let $\mathrm{h}(\mathrm{L})=\mathrm{L}\left(\mathrm{r}_{1}\right), \mathrm{r}_{1}=$?

Closure under Other Operations

Theorem 4.3: Let h be a homomorphism, if L is a regular language, then its image $h(L)$ is also regular.

Definition 4.2: Let L_{1} and L_{2} be languages on the same alphabet. Then the right quotient of L 1 with L 2 is defined as

$$
L_{1} / L_{2}=\left\{x: x y \in L_{1} \text { for some } y \in L_{2}\right\}
$$

Example 4.4: Let $L_{1}=\left\{a^{n} b^{m}: n \geq 1, m \geq 0\right\} \cup\{b a\}$ and $L_{2}=\left\{b^{m}: m \geq 1\right\}$. Then L1/L2 $==\left\{a^{n} b^{m}: n \geq 1, m \geq 0\right\}$

Theorem 4.4: If L_{1} and L_{2} are regular, then L_{1} / L_{2} is also regular.
Example 4.5: Let $\mathrm{L}_{1}=\mathrm{L}\left(\mathrm{a}^{*}\right.$ baa*) and $\mathrm{L}_{2}=\mathrm{L}\left(\mathrm{ab}^{*}\right)$. Find $\mathrm{L}_{1} / \mathrm{L}_{2}$.

Elementary Questions

Recall: What is a regular language?
Finite automaton, Regular expression, Regular grammar
Theorem 4.5: Given any regular language L on Σ and any $\mathrm{w} \in \Sigma^{*}$, there exists an algorithm for determining whether or not w is in L.

Theorem 4.6: There exists an algorithm for determining whether a regular language is empty, finite, or infinite.

Theorem 4.7: Given two regular languages L_{1} and L_{2}, there exists an algorithm for determining whether or not $L_{1}=L_{2}$.

Identifying Nonregular Languages

Example 4.6 (Using the pigeonhole principle):
Is the language $\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}}: \mathrm{n} \geq 0\right\}$ regular?
Theorem 4.8 (Pumping lemma):
Let L be an infinite regular language. Then there exists some positive integer m such that any $w \in \mathrm{~L}$ with $|w| \geq m$ can be decomposed as

$$
w=x y z \text { with }|x y| \leq m, \text { and }|y| \geq 1
$$

such that

$$
w_{\mathrm{i}}=x y^{\mathrm{i}} z \in \mathrm{~L}, \mathrm{i}=0,1,2, \ldots
$$

Example 4.7 Using the pumping lemma to show that $\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}}: \mathrm{n} \geq 0\right\}$ is not regular?

Applying the pumping lemma (1)

- The pumping lemma says there exist an m as well as the decomposition xyz. But, we do not know what they are.
- We cannot claim that we have reached a contradiction just because the pumping lemma is violated for some specific values of m or $x y z$.
- On the other hand, the pumping lemma holds for every w $\in L$ and every and every i.
- Therefore, if the pumping lemma is violated even for one w or i, then the language cannot be regular.

Applying the pumping lemma (2)

The correct argument can be visualized as a game we play against an opponent

1. The opponent picks m.
2. Given m, we pick a string w in L of length equal or greater than m.
3. The opponent chooses the decomposition $\mathrm{w}=x y z$, subject to $|x y| \leq m,|y| \geq 1$, in a way that makes it hard to establish a contradiction.
4. We try to pick i in such a way that the pumped string $w_{i}=x y^{i} z$ is not in L. If we can do so, we win the game.

Identifying Nonregular Languages

Example 4.8: Let $\Sigma=\{\mathrm{a}, \mathrm{b}\}$. Show that $\mathrm{L}=\left\{\mathrm{ww}^{\mathrm{R}}: \mathrm{w} \in \Sigma^{*}\right\}$ is not regular.

Example 4.9: Let $\Sigma=\{\mathrm{a}, \mathrm{b}\} . \mathrm{L}=\left\{\mathrm{w} \in \Sigma^{*}: \mathrm{n}_{\mathrm{a}}(\mathrm{w})<\mathrm{n}_{\mathrm{b}}(\mathrm{w})\right\}$ is not regular.

Example 4.10: $\mathrm{L}=\left\{(\mathrm{ab})^{\mathrm{n}} \mathrm{a}^{\mathrm{k}}: \mathrm{n}>\mathrm{k}, \mathrm{k} \geq 0\right\}$ is not regular.
Example 4.11: $\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}}: \mathrm{n}\right.$ is a perfect square $\}$ is not regular.
Example 4.12: $\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{k}} \mathrm{c}^{\mathrm{n}+\mathrm{k}}: \mathrm{n} \geq 0, \mathrm{k} \geq 0\right\}$ is not regular.
Example 4.13: $\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{k}}: \mathrm{n} \neq \mathrm{k}\right\}$ is not regular.

Some Common Pitfalls

- One mistake is to try using the pumping lemma to show that a language is regular. Even if you can show that no string in a language L can ever be pumped out, you cannot conclude that L is regular. The pumping lemma can only be used to prove that a language is not regular.
- Another mistake is to start (usually inadvertently) with a string not in L.
- Finally, perhaps the most common mistake is to make some assumptions about the decomposition $w=x y z$. The only thing we know is that y is not empty and that $|x y| \leq$ m;

