CS 4410

Automata, Computability, and Formal Language

Dr. Xuejun Liang

Spring 2019

Chapter 3

Regular Languages and Regular Grammars

- 1. Regular Expressions
 - Formal Definition of a regular Expression
 - Languages Associated with Regular Expressions
- 2. Connection Between Regular Expressions and Regular Languages
 - Regular Expressions Denote Regular Languages
 - Regular Expressions for Regular Languages
 - Regular Expressions for Describing Simple Patterns
- 3. Regular Grammars
 - Right- and Left-Linear Grammars
 - Right-Linear Grammars Generate Regular Languages
 - Right-Linear Grammars for Regular Languages
 - Equivalence Between Regular Languages and Regular grammars

Learning Objectives

At the conclusion of the chapter, the student will be able to:

- Identify the language associated with a regular expression
- Find a regular expression to describe a given language
- Construct a nondeterministic finite automaton to accept the language denoted by a regular expression
- Use generalized transition graphs to construct a regular expression that denotes the language accepted by a given finite automaton
- Identify whether a particular grammar is regular
- Construct regular grammars for simple languages
- Construct a nfa that accepts the language generated by a regular grammar
- Construct a regular grammar that generates the language accepted by a finite automaton

Regular Expression

Definition 3.1

Let Σ be a given alphabet. Then

- 1. \emptyset , λ , and $a \in \Sigma$ are all regular expressions. These are called primitive regular expressions.
- 2. If r_1 , r_2 and r are regular expressions, so are r_1+r_2 , $r_1 \bullet r_2$, r^* , and (r).
- 3. A string is a regular expression if and only if it can be derived from the primitive regular expressions by a finite number of applications of the rules in (2).

Exampl	e	3.	1
--------	---	----	---

For $\Sigma = \{a, b, c\},\$

the string $(a+b \bullet c)^* \bullet (c + \emptyset)$ is a regular expression, but, the string (a+b+) is not.

Languages Associated with Regular Expressions

Definition 3.2

The language L(r) denoted by any regular expression r is defined by the following rules.

- 1. \emptyset is a regular expression denoting the empty set,
- 2. λ is a regular expression denoting $\{\lambda\}$,
- 3. For every $a \in \Sigma$, a is a regular expression denoting $\{a\}$.

If r_1 , r_2 and r are regular expressions, then

4.
$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

5.
$$L(r_1 \bullet r_2) = L(r_1) L(r_2)$$

$$6. \quad \mathcal{L}((r)) = \mathcal{L}(r)$$

7.
$$L(r^*) = (L(r))^*$$

Precedence rule

Star-closure: * Concatenation: • Union: + Note: • can be omitted.

Sample Regular Expressions and Associated Languages

Regular Expression	Language
(ab)*	$\{ (ab)^n, n \ge 0 \}$
a + b	{ a, b }
(a + b)*	{ a, b }* (in other words, any string formed with a and b)
a(bb)*	$\{a, abb, abbbb, abbbbbb, \dots\}$
a*(a + b)	{ a, aa, aaa,, b, ab, aab, } (Example 3.2)
(aa)*(bb)*b	{ b, aab, aaaab,, bbb, aabbb, } (Example 3.4)
(0+1)*00(0+1)*	Binary strings containing at least one pair of consecutive zeros

Example 3.2 $L(a^* \bullet (a+b)) = ?$

Languages and Regular Expressions

Example 3.3Let $r = (a+b)^* (a + bb)$. L(r) = ?Example 3.4Let $r = (aa)^* (bb)^* b$. L(r) = ?Example 3.5For $\Sigma = \{0, 1\}$, give a regular expression r such that $L(r) = \{ w \in \{0,1\}^* : w has at least one pair of consecutive zeros \}$ Example 3.6Find a regular expression for the language $L(r) = \{ w \in \{0,1\}^* : w has no pair of consecutive zeros \}$

We say the two regular expressions are equivalent if they denote the same language.

Regular Expressions Denote Regular Languages

Theorem 3.1: Let r be a regular expression. Then there exists some nondeterministic finite accepter that accepts L(r). Consequently, L(r) is a regular language.

Generalized Transition Graph

In generalized transition graph, edges are regular expressions

Example 3.8

Find the language accepted by the generalized transition graph

Regular Expressions for Regular Languages

Theorem 3.2: Let L be a regular language. Then there exists a regular expression r such that L(r) = L.

Proof Ideals

- 1. Let an NFA M accept L. Assume M has only one final state that is different with the initial state.
- 2. Convert M to an equivalent generalized transition graph by removing all states except the initial state and the final state.
- 3. The regular expression is

$$\mathbf{r} = \mathbf{r}_1 * \mathbf{r}_2 (\mathbf{r}_4 + \mathbf{r}_3 \mathbf{r}_1 * \mathbf{r}_2) *$$

Transition Graph \rightarrow Generalized Transition Graph

Transition Graph

(q_i) ae*b (q

ae*d

Generalized Transition Graph

ce*d

ce*b

Example 3.9: Convert the nfa to generalized transition graph

Example: Find a regular expression for the language $L(r) = \{ w \in \{0,1\}^* : w \text{ has no pair of consecutive zeros} \}$

Describing Simple Patterns by Regular Expressions

/aba*c/

Regular Grammar

Definition 3.3: A grammar G=(V, T, S, P) is said to be right-linear if all productions are of the form $A \rightarrow xB$

 $A \rightarrow x$

Where A, B \in V, and x \in T*. A grammar is said to be left-linear if all productions are of the form A \rightarrow Bx A \rightarrow x

A regular grammar is one that is either right-linear or left-linear.

Example 3.13: $G_1 = (\{S\}, \{a,b\}, S, P_1)$, and $S \rightarrow abS \mid a. L(G_1) = ?$ $G_2 = (\{S, S_1, S_2\}, \{a,b\}, S, P_2)$, and $S \rightarrow S_1 ab, S_1 \rightarrow S_1 ab \mid S_2, S_2 \rightarrow a. L(G_2) = ?$

Example 3.14: G=({S, A, B}, {a,b}, S, P), and S \rightarrow A, A \rightarrow aB| λ , B \rightarrow Ab

A linear grammar is a grammar in which at most one variable can occur on the right side of any production.

Regular Grammar and Regular Language

Theorem 3.3: Let G=(V, T, S, P) be a right-linear grammar. Then G(L) is a regular language.

Example 3.15: Construct a finite automaton that accepts the language generated by the grammar $V_0 \rightarrow aV_1$ $V_1 \rightarrow abV_0 \mid b$

Theorem 3.4: If L is a regular language on alphabet Σ . Then there exists a right-linear grammar G=(V, T, S, P) such that L=L(G).

Regular Grammar and Regular Language

