CS 4410

Automata, Computability, and Formal Language

Dr. Xuejun Liang

Spring 2019

Chapter 3

Regular Languages and Regular Grammars

1. Regular Expressions

- Formal Definition of a regular Expression
- Languages Associated with Regular Expressions

2. Connection Between Regular Expressions and Regular Languages

- Regular Expressions Denote Regular Languages
- Regular Expressions for Regular Languages
- Regular Expressions for Describing Simple Patterns

3. Regular Grammars

- Right- and Left-Linear Grammars
- Right-Linear Grammars Generate Regular Languages
- Right-Linear Grammars for Regular Languages
- Equivalence Between Regular Languages and Regular grammars

Learning Objectives

At the conclusion of the chapter, the student will be able to:

- Identify the language associated with a regular expression
- Find a regular expression to describe a given language
- Construct a nondeterministic finite automaton to accept the language denoted by a regular expression
- Use generalized transition graphs to construct a regular expression that denotes the language accepted by a given finite automaton
- Identify whether a particular grammar is regular
- Construct regular grammars for simple languages
- Construct a nfa that accepts the language generated by a regular grammar
- Construct a regular grammar that generates the language accepted by a finite automaton

Regular Expression

Definition 3.1

Let Σ be a given alphabet. Then

1. $\quad \varnothing, \lambda$, and $\mathrm{a} \in \Sigma$ are all regular expressions. These are called primitive regular expressions.
2. If r_{1}, r_{2} and r are regular expressions, so are $r_{1}+r_{2}, r_{1} \bullet r_{2}, r^{*}$, and (r).
3. A string is a regular expression if and only if it can be derived from the primitive regular expressions by a finite number of applications of the rules in (2).

Example 3.1
For $\Sigma=\{a, b, c\}$, the string $(\mathrm{a}+\mathrm{b} \bullet \mathrm{c})^{*} \cdot(\mathrm{c}+\varnothing)$ is a regular expression, but, the string $(\mathrm{a}+\mathrm{b}+$) is not.

Languages Associated with Regular Expressions

Definition 3.2

The language $\mathrm{L}(\mathrm{r})$ denoted by any regular expression r is defined by the following rules.

1. \varnothing is a regular expression denoting the empty set,
2. λ is a regular expression denoting $\{\lambda\}$,
3. For every a $\in \Sigma$, a is a regular expression denoting $\{\mathrm{a}\}$.

If r_{1}, r_{2} and r are regular expressions, then
4. $\mathrm{L}\left(r_{1}+r_{2}\right)=\mathrm{L}\left(r_{1}\right) \cup \mathrm{L}\left(r_{2}\right)$
5. $\mathrm{L}\left(r_{1} \cdot r_{2}\right)=\mathrm{L}\left(r_{1}\right) \mathrm{L}\left(r_{2}\right)$
6. $\mathrm{L}((r))=\mathrm{L}(r)$
7. $\mathrm{L}\left(r^{*}\right)=(\mathrm{L}(r))^{*}$

Precedence rule
Star-closure: *
Concatenation: •
Union: +
Note: • can be omitted.

Sample Regular Expressions and Associated Languages

Regular Expression	Language
$(\mathrm{ab})^{*}$	$\left\{(\mathrm{ab})^{\mathrm{n}}, \mathrm{n} \geq 0\right\}$
$\mathrm{a}+\mathrm{b}$	$\{\mathrm{a}, \mathrm{b}\}$
$(\mathrm{a}+\mathrm{b})^{*}$	$\{\mathrm{a}, \mathrm{b}\}^{*}$ (in other words, any string formed with a and b$)$
$\mathrm{a}(\mathrm{bb})^{*}$	$\{\mathrm{a}, \mathrm{abb}, \mathrm{abbbb}, \mathrm{abbbbb}, \ldots\}$
$\mathrm{a}^{*}(\mathrm{a}+\mathrm{b})$	$\{\mathrm{a}, \mathrm{aa}, \mathrm{aaa}, \ldots, \mathrm{b}, \mathrm{ab}, \mathrm{aab}, \ldots\}$ (Example 3.2)
$(\mathrm{aa})^{*}(\mathrm{bb})^{*} \mathrm{~b}$	$\{\mathrm{~b}, \mathrm{aab}$, aaaab, $\ldots, \mathrm{bbb}, \mathrm{aabbb}, \ldots\}$ (Example 3.4)
$(0+1)^{*} 00(0+1)^{*}$	Binary strings containing at least one pair of consecutive zeros

Example $3.2 \quad \mathrm{~L}\left(\mathrm{a}^{*} \cdot(\mathrm{a}+\mathrm{b})\right)=$?

Languages and Regular Expressions

Example $3.3 \quad$ Let $\mathrm{r}=(\mathrm{a}+\mathrm{b})^{*}(\mathrm{a}+\mathrm{bb}) . \mathrm{L}(\mathrm{r})=$?
Example 3.4 Let $\mathrm{r}=(\mathrm{aa})^{*}(\mathrm{bb})^{*} \mathrm{~b} . \mathrm{L}(\mathrm{r})=$?
Example 3.5 For $\Sigma=\{0,1\}$, give a regular expression r such that

$$
L(r)=\left\{w \in\{0,1\}^{*}: w \text { has at least one pair of consecutive zeros }\right\}
$$

Example 3.6 Find a regular expression for the language

$$
L(r)=\left\{w \in\{0,1\}^{*}: w \text { has no pair of consecutive zeros }\right\}
$$

We say the two regular expressions are equivalent if they denote the same language.

Regular Expressions Denote Regular Languages

Theorem 3.1: Let r be a regular expression. Then there exists some nondeterministic finite accepter that accepts $\mathrm{L}(r)$. Consequently, $\mathrm{L}(r)$ is a regular language.

Example 3.7 Find an nfa which accepts L(r), where

$$
r=(a+b b)^{*}\left(b a^{*}+\lambda\right)
$$

Generalized Transition Graph

In generalized transition graph, edges are regular expressions

Example 3.8
Find the language accepted by the generalized transition graph

Regular Expressions for Regular Languages

Theorem 3.2: Let L be a regular language. Then there exists a regular expression r such that $\mathrm{L}(r)=\mathrm{L}$.

Proof Ideals

1. Let an NFA M accept L. Assume M has only one final state that is different with the initial state.
2. Convert M to an equivalent generalized transition graph by removing all states except the initial state and the final state.
3. The regular expression is

$$
\mathrm{r}=\mathrm{r}_{1} * \mathrm{r}_{2}\left(\mathrm{r}_{4}+\mathrm{r}_{3} \mathrm{r}_{1} * \mathrm{r}_{2}\right)^{*}
$$

Transition Graph \rightarrow

Generalized Transition Graph

Transition Graph

Generalized Transition Graph

Example: Find a regular expression for the language

$$
L(r)=\left\{w \in\{0,1\}^{*}: w \text { has no pair of consecutive zeros }\right\}
$$

Describing Simple Patterns by Regular Expressions $\quad \mid a b a * c /$

Regular Grammar

Definition 3.3: A grammar $\mathrm{G}=(\mathrm{V}, \mathrm{T}, \mathrm{S}, \mathrm{P})$ is said to be right-linear if all productions are of the form

$$
\begin{aligned}
& \mathrm{A} \rightarrow \mathrm{xB} \\
& \mathrm{~A} \rightarrow \mathrm{x}
\end{aligned}
$$

Where $A, B \in V$, and $x \in T^{*}$. A grammar is said to be left-linear if all productions are of the form

$$
\begin{aligned}
& \mathrm{A} \rightarrow \mathrm{Bx} \\
& \mathrm{~A} \rightarrow \mathrm{x}
\end{aligned}
$$

A regular grammar is one that is either right-linear or left-linear.
Example 3.13: $\mathrm{G}_{1}=\left(\{\mathrm{S}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{S}, \mathrm{P}_{1}\right)$, and $\mathrm{S} \rightarrow \mathrm{abS} \mid \mathrm{a} . \mathrm{L}\left(\mathrm{G}_{1}\right)=$?
$\mathrm{G}_{2}=\left(\left\{\mathrm{S}, \mathrm{S}_{1}, \mathrm{~S}_{2}\right\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{S}, \mathrm{P}_{2}\right)$, and $\mathrm{S} \rightarrow \mathrm{S}_{1} \mathrm{ab}, \mathrm{S}_{1} \rightarrow \mathrm{~S}_{1} \mathrm{ab} \mid \mathrm{S}_{2}, \mathrm{~S}_{2} \rightarrow \mathrm{a} . \mathrm{L}\left(\mathrm{G}_{2}\right)=$?
Example 3.14: $\mathrm{G}=(\{\mathrm{S}, \mathrm{A}, \mathrm{B}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{S}, \mathrm{P})$, and $\mathrm{S} \rightarrow \mathrm{A}, \mathrm{A} \rightarrow \mathrm{aB} \mid \lambda, \mathrm{B} \rightarrow \mathrm{Ab}$
A linear grammar is a grammar in which at most one variable can occur on the right side of any production.

Regular Grammar and Regular Language

Theorem 3.3: Let $\mathrm{G}=(\mathrm{V}, \mathrm{T}, \mathrm{S}, \mathrm{P})$ be a right-linear grammar. Then $\mathrm{G}(\mathrm{L})$ is a regular language.

Example 3.15: Construct a finite automaton that accepts the language generated by the grammar

$$
\begin{aligned}
& \mathrm{V}_{0} \rightarrow \mathrm{aV}_{1} \\
& \mathrm{~V}_{1} \rightarrow \mathrm{abV}_{0} \mid \mathrm{b}
\end{aligned}
$$

Theorem 3.4: If L is a regular language on alphabet Σ. Then there exists a right-linear grammar $\mathrm{G}=(\mathrm{V}, \mathrm{T}, \mathrm{S}, \mathrm{P})$ such that $\mathrm{L}=\mathrm{L}(\mathrm{G})$.

Regular Grammar and Regular Language

Example 3.16: Construct a right-linear grammar for L(aab*a).

NFA or DFA M

Theorem $3.2 』$ § Theorem 3.1

Regular grammar G
\Leftrightarrow Regular language L(G)

