CS 4410

Automata, Computability, and
Formal Language

Dr. Xuejun Liang

Spring 2019

Chapter 3

Reqgular Languages and Regular Grammars

1.

Reqgular Expressions
« Formal Definition of a regular Expression
« Languages Associated with Regular Expressions

Connection Between Regular Expressions and

Regular Languages

« Regular Expressions Denote Regular Languages

« Regular Expressions for Regular Languages

« Regular Expressions for Describing Simple Patterns

Regular Grammars

« Right- and Left-Linear Grammars

« Right-Linear Grammars Generate Regular Languages

« Right-Linear Grammars for Regular Languages

« Equivalence Between Regular Languages and Regular
grammars

Learning Objectives
At the conclusion of the chapter, the student will be able to:

 |dentify the language associated with a regular expression
« Find a regular expression to describe a given language

« Construct a nondeterministic finite automaton to accept the
language denoted by a regular expression

« Use generalized transition graphs to construct a regular expression
that denotes the language accepted by a given finite automaton

 ldentify whether a particular grammar is regular
« Construct regular grammars for simple languages

« Construct a nfa that accepts the language generated by a regular
grammar

« Construct a regular grammar that generates the language accepted
by a finite automaton

Regular Expression

Definition 3.1

Let 2 be a given alphabet. Then

1. &, A, anda € X are all regular expressions. These are called
primitive regular expressions.

2. Ifry, r,andr areregular expressions, so are r+r,, rye ry, 1,
and (7).

3. Astringis a regular expression if and only if it can be derived
from the primitive regular expressions by a finite number of
applications of the rules in (2).

For 2={a, b, c},
the string (a+b « c)* « (c + &) Is a regular expression,
but, the string (a+b+) is not.

Example 3.1

Languages Associated with Regular

EXxpressions
Definition 3.2

The language L(r) denoted by any regular expression r 1s defined by the
following rules.

1. isaregular expression denoting the empty set,

2. Aisaregular expression denoting {A},

3. Forevery a € 2, ais a regular expression denoting {a}.
If r, v, and r are regular expressions, then

4. L(r;+ 1y =L(r) v L(ry

5. L(ryery) =L(ry) L(ry) Precedence rule

6. L((r))=L(r) Star-closure: *

7. L(r*)=(L(r))* Concatenation: e
Union: +

Note: « can be omitted.

Sample Regular Expressions and
Assoclated Languages

Regular Language
EXxpression

(ab)* { (@), n>0}
a+b {a b}
(a+hb)* { a, b }* (in other words, any string formed with a and b)
a(bb)* { a, abb, abbbb, abbbbbb, ... }
a*(a+Db) { a, aa, aaa, ..., b, ab, aab, ... } (Example 3.2)
(aa)*(bb)*b { b, aab, aaaab, ..., bbb, aabbb, ... } (Example 3.4)

(0 + 1)*00(0 + 1)* Binary strings containing at least one pair of consecutive zeros

Example 3.2 L(@* «(ath))="7

Languages and Regular Expressions

Example 3.3 Letr=(ath)* (a+bb). L(r)=?
Example 3.4 Letr=(aa)* (bb)*b. L(r) =7

Example 3.5 For X = {0, 1}, give a regular expression r such that

L(r) = { we{0,1}*: w has at least one pair of consecutive zeros}

Example 3.6 Find a regular expression for the language

L(r) = { we{0,1}*: w has no pair of consecutive zeros}

We say the two regular expressions are equivalent if they
denote the same language.

Regular Expressions Denote
Reqgular Languages

Theorem 3.1: Let r be a regular expression. Then there exists some
nondeterministic finite accepter that accepts L(r). Consequently, L(r)

IS a regular language.

Example 3.7

Find an nfa which accepts L(r), where

r = (a+ bb)* (ba* + 1)

NFA or DFA M

—

? @ ﬁTheorem 3.1

—>

Regular expressionr | —

?

Regular language L(M)

Regular language L(r)

Generalized Transition Graph

In generalized transition graph, edges are regular expressions

NFA | ——— — | Language

U I

Generalized Transition Graph |[<—=>| Language

U U

Regular expression | <<————= | Language

Example 3.8 . -
Find the language accepted

by the generalized transition ah ﬁ‘

graph

Regular Expressions for
Regular Languages

Theorem 3.2: Let L be a regular language. Then there exists a regular
expression 1 such that L(r) = L.

Proof ldeals

1. Letan NFA M accept L. Assume M has only one final state that
Is different with the initial state.

2. Convert M to an equivalent
generalized transition graph
by removing all states except
the initial state and the final
state.

3. The regular expression is [= 1%, (Tl *T,)*

10

Transition Graph -
Generalized Transition Graph

o ae*d ce*b
d c \
PN
. OFETO
Transition Graph Generalized Transition Graph

Example 3.9: L
Convert the nfa to generalized “/""\ b
transition graph @

Example: Find a regular expression for the language
L(r) = { we{0,1}*: w has no pair of consecutive zeros}

Describing Simple Patterns by Regular Expressions /aba*c/

11

Regular Grammar

Definition 3.3: Agrammar G=(V, T, S, P) is said to be right-linear if all

productions are of the form A xB

A2 X
Where A, B € V, and x € T*. Agrammar is said to be left-linear if all
productions are of the form A - Bx

A2 X

A regular grammar is one that is either right-linear or left-linear.

Example 3.13: G,=({S}, {a,b}, S, P,),and S - abS|a. L(G,)="
G,=({S, S, S,}, {a,b}, S, P,), and S=>S,ab, S;2S,ab | S,, S,2a. L(G,)=7

Example 3.14: G=({S, A, B}, {a,b}, S, P),and S A, A=>aB|A, B2>ADb

A linear grammar is a grammar in which at most one variable can occur
on the right side of any production.

12

Regular Grammar and Regular
Language

Theorem 3.3: Let G=(V, T, S, P) be a right-linear grammar. Then G(L)
IS a regular language.

@L@a_%@_, _Oﬁ.@ => V2aa,..a,V,
: a C 3, Q—’ @ﬁ@ > V,2aa,..a,

Example 3.15: Construct a finite automaton that accepts the language
generated by the grammar v/ 5 av,

V, > abV, | b

Theorem 3.4: If Lis a regular language on alphabet . Then there exists
a right-linear grammar G=(V, T, S, P) such that L=L(G).

13

Regular Grammar and Regular
Language

Example 3.16: Construct a right-linear

grammar for L(aab*a).

NFA or DFA M

—

Theorem 3.2 @ ﬁ Theorem 3.1

Regular expression r

—

Theorem 3.4 @ ﬁ Theorem 3.3

Regular grammar G

—

o @@

Regular language L(M)

Regular language L(r)

Regular language L(G)

14

