
1

Automata, Computability, and 
Formal Language

CS 4410

Dr. Xuejun Liang

Spring 2019



2

Chapter 2
Finite Automata

1. Deterministic Finite Accepters
• Deterministic Accepters and Transition Graphs
• Languages and Dfas
• Regular Language

2. Nondeterministic Finite Accepters
• Definition of a Nondeterministic Accepter
• Why Nondeterministic

3. Equivalence of Deterministic and Nondeterministic 
Finite Accepters



Learning Objectives
At the conclusion of the chapter, the student will be able to:

• Describe the components of a deterministic finite 
accepter (dfa)

• State whether an input string is accepted by a dfa
• Describe the language accepted by a dfa
• Construct a dfa to accept a specific language
• Show that a particular language is regular
• Describe the differences between deterministic and 

nondeterministic finite automata (nfa)
• State whether an input string is accepted by a nfa
• Construct a nfa to accept a specific language
• Transform an arbitrary nfa to an equivalent dfa



4

Deterministic Finite Accepters
Definition 2.1
A deterministic finite accepter or dfa is defined by the quintuple

M = (Q, , , q0, F)
where Q is a finite set of internal states,

 is a finite set of symbols called the input alphabet,
: Q  Q is a total function called the transition function,
q0  Q is the initial state,
F  Q is a set of final states. 

Transition Graph of a dfa M = (Q, , , q0, F)
Vertex labeled with qi: state qi  Q,
Edge from qi to qj labeled with a: transition (qi, a) = qj.
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where  is given by
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Languages and Dfas
The extended transition function * : Q*  Q can be 
recursively defined by
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Definition 2.2
The language accepted by a dfa M = (Q, , , q0, F) is the set of all
strings on  accepted by M. In formal notation 

}.),(:{)( 0 FwqwML   

Example 2.2

q0
a, b

a

q2q1

b

a, b

M is given as below, L(M) = ?
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Languages and Dfas

Theorem 2.1 Let M = (Q, , , q0, F) a dfa, and let GM be its
associated transition graph. Then *(qi, w) = qj if and only if
there is in GM a walk with label w from qi to qj.

Example 2.3 Find a dfa that accepts all strings on  = {a, b}
starting with the prefix ab.

Example 2.4 Find a dfa that accepts all strings on  = {0, 1},
except those containing the substring 001.
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Regular Languages

Definition 2.3
A language L is called regular if and only if there exists
some deterministic finite accepter M such that L = L(M).

Example 2.5
Show that the language L={awa : w{a, b}*} is regular.

Example 2.6
Let L={awa : w{a, b}*}. Show that L2 is regular.
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Nondeterministic Finite Accepters
Definition 2.4
A nondeterministic finite accepter or nfa is defined by the quintuple

M = (Q, , , q0, F)
where Q, , q0, and F are as for deterministic finite accepter, but 

: Q({})  2Q

Transition Graph of an nfa M = (Q, , , q0, F)
Vertex labeled with qi: state qi  Q,
Edge from qi to qj labeled with a:  qj  (qi, a)

Example 2.7 An nfa is shown as below

q0

a

q2 q3a q1

q4 q5

a a

a

a
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Nondeterministic Finite Accepters
Example 2.8 An nfa is shown as below

The extended transition function * : Q*  2Q can be defined by
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Definition 2.5 (This is a theorem if the above definition is used)
For an nfa, the extended transition function is defined so that *(qi,w)
contains qj if and only if there is a walk in the transition graph from qi

to qj labeled w. This holds for all qi, qj  Q and w  *. 
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Nondeterministic Finite Accepters
Example 2.9 Consider an nfa, we have
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Definition 2.6
The language accepted by an nfa M = (Q, , , q0, F) is the set of all
strings on  accepted by M. In formal notation

}.),(:{)( 0   FwqwML 

Example 2.10 What is the language accepted by the nfa in Example 2.8

Why Nondeterminism?
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Equivalence of Deterministic and 
Nondeterministic Finite Accepters
Definition 2.7
Two finite accepters M1 and M2 are said to be equivalent if

L(M1)=L(M2)
That is, if they accept the same language.

Example 2.11  
The dfa is equivalent to 
the nfa in Example 2.8

q2q0
1

0

1
q1

0

0,1

Example 2.12  
Convert the nfa to 
an equivalent dfa

q2q1


q0

a

a

b
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Equivalence of Deterministic and 
Nondeterministic Finite Accepters

Theorem 2.2 Let L be the language accepted by an nfa
MN = (QN, , N, q0, FN). Then there exists a dfa
MD = (QD, , D, {q0}, FD) such that L = L(MD).

Example 2.13  
Convert the nfa to 
an equivalent dfa

q2q1
0, 1

q0
0, 1

0 1

Property: Every language accepted by an nfa is regular
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Procedure: Nfa_to_Dfa

1. Create a graph GD with vertex {q0} as the initial vertex

2. Repeat until no more edges are missing
a. Take any vertex {qi, qj, .., qk} of GD that has no outgoing edge for some a .

b. Compute {ql, qm, …,qn} = *(qi, a)*(qj, a) …  *(qk, a)

c. Create a vertex for GD labeled {ql, qm, …,qn} if it does not already exist.

d. Add to GD an edge from {qi, qj, .., qk} to {ql, qm, …,qn} and label it with a

3. Every state of GD whose label contains any qf  FN is identified as a final vertex.

4. If MN accepts , the vertex {q0} in GD is also made a final vertex.
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The following slides from my compiler class

Conversion of an NFA into a DFA

• The subset construction algorithm converts an 
NFA into a DFA using:
– -closure(s) = {s}  { ts  …  t}

– -closure(T) = sT-closure(s)

– move(T, a) = { st a s and t  T}

• The algorithm produces:
– Dstates -- the set of states of the new DFA   

consisting of sets of states of the NFA

– Dtran -- the transition table of the new DFA
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The Subset Construction Algorithm

Initially, -closure(q0) is the only state in Dstates
and it is unmarked
while (there is an unmarked state T in Dstates) {

mark T
for (each input symbol a  ) {

U = -closure(move(T,a))
if (U is not in Dstates)

add U as an unmarked state to Dstates
Dtran[T,a] := U

}
}



Computing -closure(T)
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push all states of T onto stack;
initialize -closure(T) to T;
while ( stack is not empty ) {

pop t, the top element, off stack;
for ( each state u with an edge from t to u labeled )

if ( u is not in -closure(T) ) {
add u to -closure(T) ;
push u onto stack;

}
}
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Subset Construction Example 1
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Subset Construction Example 2

Dstates
A = {0,1,3,7}
B = {2,4,7}
C = {8}
D = {7}
E = {5,8}
F = {6,8}
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