CS 4410

Automata, Computability, and Formal Language

Dr. Xuejun Liang

Spring 2019

Chapter 2

Finite Automata

- 1. Deterministic Finite Accepters
 - Deterministic Accepters and Transition Graphs
 - Languages and Dfas
 - Regular Language
- 2. Nondeterministic Finite Accepters
 - Definition of a Nondeterministic Accepter
 - Why Nondeterministic
- 3. Equivalence of Deterministic and Nondeterministic Finite Accepters

Learning Objectives

At the conclusion of the chapter, the student will be able to:

- Describe the components of a deterministic finite accepter (dfa)
- State whether an input string is accepted by a dfa
- Describe the language accepted by a dfa
- Construct a dfa to accept a specific language
- Show that a particular language is regular
- Describe the differences between deterministic and nondeterministic finite automata (nfa)
- State whether an input string is accepted by a nfa
- Construct a nfa to accept a specific language
- Transform an arbitrary nfa to an equivalent dfa

Deterministic Finite Accepters

Definition 2.1

A deterministic finite accepter or dfa is defined by the quintuple

 $\mathbf{M} = (\mathbf{Q}, \boldsymbol{\Sigma}, \boldsymbol{\delta}, \mathbf{q}_0, \mathbf{F})$

where Q is a finite set of internal states,

 Σ is a finite set of symbols called the input alphabet, $\delta: Q \times \Sigma \rightarrow Q$ is a total function called the transition function, $q_0 \in Q$ is the initial state, $F \subseteq Q$ is a set of final states.

Transition Graph of a dfa $M = (Q, \Sigma, \delta, q_0, F)$ Vertex labeled with q_i : state $q_i \in Q$, Edge from q_i to q_j labeled with a: transition $\delta(q_i, a) = q_j$.

Example 2.1 $M = (\{q_0, q_1, q_3\}, \{0, 1\}, \delta, q_0, \{q_1\}),$ where δ is given by $\delta(q_0, 0) = q_0, \delta(q_0, 1) = q_1, \delta(q_1, 0) = q_0,$ $\delta(q_1, 1) = q_2, \delta(q_2, 0) = q_2, \delta(q_2, 1) = q_1$

4

Languages and Dfas

The extended transition function $\delta^* : Q \times \Sigma^* \rightarrow Q$ can be recursively defined by

$$\delta^*(q,\lambda) = q$$

$$\delta^*(q,wa) = \delta(\delta^*(q,w),a)$$

Definition 2.2

The language accepted by a dfa $M = (Q, \Sigma, \delta, q_0, F)$ is the set of all strings on Σ accepted by M. In formal notation

$$L(M) = \{ w \in \Sigma^* : \delta^*(q_0, w) \in F \}.$$

Example 2.2 M is given as below, L(M) = ?

Languages and Dfas

Theorem 2.1 Let $M = (Q, \Sigma, \delta, q_0, F)$ a dfa, and let G_M be its associated transition graph. Then $\delta^*(q_i, w) = q_j$ if and only if there is in G_M a walk with label w from q_i to q_j .

Example 2.3 Find a dfa that accepts all strings on $\Sigma = \{a, b\}$ starting with the prefix ab.

Example 2.4 Find a dfa that accepts all strings on $\Sigma = \{0, 1\}$, except those containing the substring 001.

Regular Languages

Definition 2.3

A language L is called regular if and only if there exists some deterministic finite accepter M such that L = L(M).

Example 2.5

Show that the language $L = \{awa : w \in \{a, b\}^*\}$ is regular.

Example 2.6 Let $L=\{awa : w \in \{a, b\}^*\}$. Show that L^2 is regular.

Nondeterministic Finite Accepters

Definition 2.4

A nondeterministic finite accepter or nfa is defined by the quintuple $M = (Q, \Sigma, \delta, q_0, F)$ where Q, Σ , q_0 , and F are as for deterministic finite accepter, but $\delta: Q \times (\Sigma \cup \{\lambda\}) \rightarrow 2^Q$

Transition Graph of an nfa M = (Q, Σ , δ , q_0 , F) Vertex labeled with q_i : state $q_i \in Q$, Edge from q_i to q_j labeled with a: $q_j \in \delta(q_i, a)$

Example 2.7 An nfa is shown as below

Nondeterministic Finite Accepters

Example 2.8 An nfa is shown as below

The extended transition function $\delta^* : Q \times \Sigma^* \rightarrow 2^Q$ can be defined by

 $\delta^*(q,\lambda) = \{q\} \cup \delta(q,\lambda)$ $\delta^*(q,wa) = \bigcup \{\delta(p,a) \colon p \in \delta^*(q,w)\}$

Definition 2.5 (This is a theorem if the above definition is used) For an nfa, the extended transition function is defined so that $\delta^*(q_i, w)$ contains q_j if and only if there is a walk in the transition graph from q_i to q_i labeled w. This holds for all $q_i, q_i \in Q$ and $w \in \Sigma^*$.

Nondeterministic Finite Accepters

Example 2.9 Consider an nfa, we have

 $\delta^*(q_1, a) = \{q_0, q_1, q_2\}$ $\delta^*(q_2, \lambda) = \{q_0, q_2\}$ $\delta^*(q_2, aa) = \{q_0, q_1, q_2\}$

Definition 2.6

The language accepted by an nfa $M = (Q, \Sigma, \delta, q_0, F)$ is the set of all strings on Σ accepted by M. In formal notation

$$L(M) = \{ w \in \Sigma^* : \delta^*(q_0, w) \cap F \neq \emptyset \}.$$

Example 2.10 What is the language accepted by the nfa in Example 2.8

Why Nondeterminism?

Equivalence of Deterministic and Nondeterministic Finite Accepters

Definition 2.7

Two finite accepters M_1 and M_2 are said to be equivalent if $L(M_1)=L(M_2)$

That is, if they accept the same language.

Convert the nfa to an equivalent dfa

Equivalence of Deterministic and Nondeterministic Finite Accepters

Theorem 2.2 Let L be the language accepted by an nfa $M_N = (Q_N, \Sigma, \delta_N, q_0, F_N)$. Then there exists a dfa $M_D = (Q_D, \Sigma, \delta_D, \{q_0\}, F_D)$ such that $L = L(M_D)$.

Example 2.13 Convert the nfa to an equivalent dfa

Property: Every language accepted by an nfa is regular

Procedure: Nfa_to_Dfa

1. Create a graph G_D with vertex $\{q_0\}$ as the initial vertex

2. Repeat until no more edges are missing

- a. Take any vertex $\{q_i, q_j, ..., q_k\}$ of G_D that has no outgoing edge for some $a \in \Sigma$.
- b. Compute $\{q_1, q_m, \dots, q_n\} = \delta^*(q_i, a) \cup \delta^*(q_j, a) \cup \dots \cup \delta^*(q_k, a)$
- c. Create a vertex for G_D labeled $\{q_l, q_m, ..., q_n\}$ if it does not already exist.

d. Add to G_D an edge from $\{q_i, q_j, ..., q_k\}$ to $\{q_l, q_m, ..., q_n\}$ and label it with a

3. Every state of G_D whose label contains any $q_f \in F_N$ is identified as a final vertex.

4. If M_N accepts λ , the vertex $\{q_0\}$ in G_D is also made a final vertex.

The following slides from my compiler class Conversion of an NFA into a DFA

• The *subset construction* algorithm converts an NFA into a DFA using:

$$-\lambda \text{-}closure(s) = \{s\} \cup \{t \mid s \rightarrow_{\varepsilon} \dots \rightarrow_{\varepsilon} t\}$$

$$-\lambda - closure(T) = \bigcup_{s \in T} \lambda - closure(s)$$

$$-move(T, a) = \{ s \mid t \rightarrow_a s \text{ and } t \in T \}$$

- The algorithm produces:
 - *Dstates* -- the set of states of the new DFA consisting of sets of states of the NFA
 - *Dtran* -- the transition table of the new DFA

The Subset Construction Algorithm

Initially, ε -*closure*(q_0) is the only state in *Dstates* and it is unmarked while (there is an unmarked state T in Dstates) { mark T for (each input symbol $a \in \Sigma$) { $U = \lambda$ -closure(move(T,a)) if (*U* is not in *Dstates*) add U as an unmarked state to *Dstates* Dtran[T,a] := U} }

Computing λ -closure(*T*)

```
push all states of T onto stack;

initialize \lambda-closure(T) to T;

while (stack is not empty) {

    pop t, the top element, off stack;

    for (each state u with an edge from t to u labeled \lambda)

    if (u is not in \lambda-closure(T)) {

        add u to \lambda-closure(T);

        push u onto stack;

    }

}
```

Subset Construction Example 1

Subset Construction Example 2

