
1

Automata, Computability, and
Formal Language

CS 4410

Dr. Xuejun Liang

Spring 2019

2

Chapter 2
Finite Automata

1. Deterministic Finite Accepters
• Deterministic Accepters and Transition Graphs
• Languages and Dfas
• Regular Language

2. Nondeterministic Finite Accepters
• Definition of a Nondeterministic Accepter
• Why Nondeterministic

3. Equivalence of Deterministic and Nondeterministic
Finite Accepters

Learning Objectives
At the conclusion of the chapter, the student will be able to:

• Describe the components of a deterministic finite
accepter (dfa)

• State whether an input string is accepted by a dfa
• Describe the language accepted by a dfa
• Construct a dfa to accept a specific language
• Show that a particular language is regular
• Describe the differences between deterministic and

nondeterministic finite automata (nfa)
• State whether an input string is accepted by a nfa
• Construct a nfa to accept a specific language
• Transform an arbitrary nfa to an equivalent dfa

4

Deterministic Finite Accepters
Definition 2.1
A deterministic finite accepter or dfa is defined by the quintuple

M = (Q, , , q0, F)
where Q is a finite set of internal states,

 is a finite set of symbols called the input alphabet,
: Q  Q is a total function called the transition function,
q0  Q is the initial state,
F  Q is a set of final states.

Transition Graph of a dfa M = (Q, , , q0, F)
Vertex labeled with qi: state qi  Q,
Edge from qi to qj labeled with a: transition (qi, a) = qj.

Example 2.1 }),{,,},1,0{},,,({ 10310 qqqqqM 

122221

011000

)1,(,)0,(,)1,(

,)0,(,)1,(,)0,(

qqqqqq

qqqqqq







where  is given by

5

Languages and Dfas
The extended transition function * : Q*  Q can be
recursively defined by

)),,((),(

),(

awqwaq

qq












Definition 2.2
The language accepted by a dfa M = (Q, , , q0, F) is the set of all
strings on  accepted by M. In formal notation

}.),(:{)(0 FwqwML   

Example 2.2

q0
a, b

a

q2q1

b

a, b

M is given as below, L(M) = ?

6

Languages and Dfas

Theorem 2.1 Let M = (Q, , , q0, F) a dfa, and let GM be its
associated transition graph. Then *(qi, w) = qj if and only if
there is in GM a walk with label w from qi to qj.

Example 2.3 Find a dfa that accepts all strings on  = {a, b}
starting with the prefix ab.

Example 2.4 Find a dfa that accepts all strings on  = {0, 1},
except those containing the substring 001.

7

Regular Languages

Definition 2.3
A language L is called regular if and only if there exists
some deterministic finite accepter M such that L = L(M).

Example 2.5
Show that the language L={awa : w{a, b}*} is regular.

Example 2.6
Let L={awa : w{a, b}*}. Show that L2 is regular.

8

Nondeterministic Finite Accepters
Definition 2.4
A nondeterministic finite accepter or nfa is defined by the quintuple

M = (Q, , , q0, F)
where Q, , q0, and F are as for deterministic finite accepter, but

: Q({})  2Q

Transition Graph of an nfa M = (Q, , , q0, F)
Vertex labeled with qi: state qi  Q,
Edge from qi to qj labeled with a: qj  (qi, a)

Example 2.7 An nfa is shown as below

q0

a

q2 q3a q1

q4 q5

a a

a

a

9

Nondeterministic Finite Accepters
Example 2.8 An nfa is shown as below

The extended transition function * : Q*  2Q can be defined by

)},(:),({),(

),(}{),(

wqpapwaq

qqq












q2q0
0,1

0

1
q1



Definition 2.5 (This is a theorem if the above definition is used)
For an nfa, the extended transition function is defined so that *(qi,w)
contains qj if and only if there is a walk in the transition graph from qi

to qj labeled w. This holds for all qi, qj  Q and w  *.

10

Nondeterministic Finite Accepters
Example 2.9 Consider an nfa, we have

q2q1
a

q0



},,{),(

},{),(

},,{),(

2102

202

2101

qqqaaq

qqq

qqqaq



















Definition 2.6
The language accepted by an nfa M = (Q, , , q0, F) is the set of all
strings on  accepted by M. In formal notation

}.),(:{)(0   FwqwML 

Example 2.10 What is the language accepted by the nfa in Example 2.8

Why Nondeterminism?

11

Equivalence of Deterministic and
Nondeterministic Finite Accepters
Definition 2.7
Two finite accepters M1 and M2 are said to be equivalent if

L(M1)=L(M2)
That is, if they accept the same language.

Example 2.11
The dfa is equivalent to
the nfa in Example 2.8

q2q0
1

0

1
q1

0

0,1

Example 2.12
Convert the nfa to
an equivalent dfa

q2q1


q0

a

a

b

12

Equivalence of Deterministic and
Nondeterministic Finite Accepters

Theorem 2.2 Let L be the language accepted by an nfa
MN = (QN, , N, q0, FN). Then there exists a dfa
MD = (QD, , D, {q0}, FD) such that L = L(MD).

Example 2.13
Convert the nfa to
an equivalent dfa

q2q1
0, 1

q0
0, 1

0 1

Property: Every language accepted by an nfa is regular

13

Procedure: Nfa_to_Dfa

1. Create a graph GD with vertex {q0} as the initial vertex

2. Repeat until no more edges are missing
a. Take any vertex {qi, qj, .., qk} of GD that has no outgoing edge for some a .

b. Compute {ql, qm, …,qn} = *(qi, a)*(qj, a) …  *(qk, a)

c. Create a vertex for GD labeled {ql, qm, …,qn} if it does not already exist.

d. Add to GD an edge from {qi, qj, .., qk} to {ql, qm, …,qn} and label it with a

3. Every state of GD whose label contains any qf  FN is identified as a final vertex.

4. If MN accepts , the vertex {q0} in GD is also made a final vertex.

14

The following slides from my compiler class

Conversion of an NFA into a DFA

• The subset construction algorithm converts an
NFA into a DFA using:
– -closure(s) = {s}  { ts  …  t}

– -closure(T) = sT-closure(s)

– move(T, a) = { st a s and t  T}

• The algorithm produces:
– Dstates -- the set of states of the new DFA

consisting of sets of states of the NFA

– Dtran -- the transition table of the new DFA

15

The Subset Construction Algorithm

Initially, -closure(q0) is the only state in Dstates
and it is unmarked
while (there is an unmarked state T in Dstates) {

mark T
for (each input symbol a  ) {

U = -closure(move(T,a))
if (U is not in Dstates)

add U as an unmarked state to Dstates
Dtran[T,a] := U

}
}

Computing -closure(T)

16

push all states of T onto stack;
initialize -closure(T) to T;
while (stack is not empty) {

pop t, the top element, off stack;
for (each state u with an edge from t to u labeled )

if (u is not in -closure(T)) {
add u to -closure(T) ;
push u onto stack;

}
}

17

Subset Construction Example 1

0
start a

1 10

2

b

b

a

b

3

4 5

6 7 8 9
 











A
start

B

C

D E

b

b

b

b

b

a
a

a

a

a

NFA for (ab)*abb

18

Subset Construction Example 2

Dstates
A = {0,1,3,7}
B = {2,4,7}
C = {8}
D = {7}
E = {5,8}
F = {6,8}

2
a

1

6
a

3 4 5
b b

8b7

a b
0

start






b

A
start

a

D

b

b a
b

b
B

C

E F

a

b

a1

a3

a3 a2 a3

