
1

Automata, Computability, and 
Formal Language

CS 4410

Dr. Xuejun Liang

Chapter 12: Limits of Algorithmic Computation



2

Chapter 12: Limits of Algorithmic Computation

1. Some Problems That Cannot Be Solved By Turing 
Machines

• Computability and Decidability

• The Turing Machine Halting Problems

• Reducing One Undecidable Problem to Another

2. Undecidable Problems for Recursively Enumerable 
Languages

3. The Post Correspondence Problem

4. Undecidable Problems for Context-Free Languages

5. A Question of Efficiency



Learning Objectives
At the conclusion of the chapter, the student will be able to:

1. Explain and differentiate the concepts of computability and 
decidability

2. Define the Turing machine halting problem

3. Discuss the relationship between the halting problem and recursively 
enumerable languages

4. Give examples of undecidable problems regarding Turing machines to 
which the halting problem can be reduced

5. Give examples of undecidable problems regarding recursively 
enumerable languages

6. Determine if there is a solution to an instance of the Post 
correspondence problem

7. Give examples of undecidable problems regarding context-free 
languages



Computability and Decidability

• Are there questions which are clearly and precisely stated, 
yet have no algorithmic solution?

• As stated in chapter 9, a function f is computable if there 
exists a Turing machine that computes the value of f for all 
arguments in its domain

• Since there may be a Turing machine that can compute f for 
part of the domain, it is crucial to define the domain of f
precisely

• The concept of decidability applies to computations that 
result in a “yes” or  “no” answer: a problem is decidable if 
there exists a Turing machine that gives the correct answer 
for every instance in the domain



The Turing Machine Halting Problem (1)

• The Turing machine halting problem can be stated as: Given 
the description of a Turing machine M and an input string w, 
does M, when started in the initial configuration q0w, 
perform a computation that eventually halts?

• The domain of the problem is the set of all Turing machines 
and all input strings.

• Any attempts to simulate the computation on a universal 
Turing machine face the problem of not knowing if/when M 
has entered an infinite loop

• By Theorem 12.1, there does not exist any Turing machine 
that finds the correct answer in all instances; the halting 
problem is therefore undecidable



The Turing Machine Halting Problem (2)

• Definition 12.1 (The Halting Problem) 

Let wM be a string that describes a Turing machine M = (Q, Σ, Γ, δ, 
q0, , F), and let w be a string in M’s alphabet. We will assume 
that wM and w are encoded as a string of 0’s and 1’s, as suggested 
in Section 10.4. A solution of the halting problem is a Turing 
machine H, which for any wM and w performs the computation

if M applied to w halts, and 

if M applied to w does not halt. Here qy and qn are both final 
states of H.



The Turing Machine Halting Problem (3)

• Theorem 12.1

There does not exist any Turing machine H that behaves as 
required by Definition 12.1. The halting problem is therefore 
undecidable.

• Idea of Proof

M halts

M does not halt
H H’



The Turing Machine Halting Problem (4)

෡𝐻
M halts if applied to wM

M does not halt if applied to wM

෡𝐻
෡𝐻 halts if applied to ෝ𝑤

෡𝐻 does not halt if applied to ෝ𝑤



The Halting Problem and Recursively 
Enumerable Languages

Theorem 12.2 states that, if the halting problem were decidable, 
then every recursively enumerable language would be recursive

• Assume that L is a recursively enumerable language and M is a 
Turing machine that accepts L

• Let H be a Turing machine that solves the halting problem, then we 
can apply H to the accepting machine M (i.e. 𝑤𝑀𝑤)

• If H concludes that M does not halt, then 𝑤 is not in L

• If H concludes that M halts, then M will determine If 𝑤 is in L

• Consequently, we would have a membership algorithm for L. This 
makes L recursive. 

But we already know that there are recursively enumerable languages 
that are not recursive. The contradiction implies that H cannot exist, 
that is, that the halting problem is undecidable



Reducing One Undecidable Problem to 
Another

• A problem A is reduced to a problem B if the decidability 
of A follows from the decidability of B

• An example is the state-entry problem:  given any Turing 
machine M and string w, decide whether or not the state 
q is ever entered when M is applied to w

• If we had an algorithm that solves the state-entry 
problem, it could be used to solve the halting problem

• However, because the halting problem is undecidable, 
the state-entry problem must also be undecidable



Example 12.1: Reduce the halting problem to 
the state-entry problem

• The state-entry problem (M, q, w)

If the state q is ever entered when M is applied to w? 

• Suppose that we have an algorithm A that solves the 
state-entry problem

• Given any M and w, modify M to get ෡𝑀 in such a way that 
෡𝑀 halts in q if and only if M halts by doing

• If 𝛿(𝑞𝑖 , 𝑎) is undefined in M, define in ෡𝑀: 𝛿 𝑞𝑖 , 𝑎 = (𝑞, 𝑎, 𝑅), 
where q is a final state.

• Apply the state-entry algorithm A to ( ෡𝑀, q, w)

• If A answers yes, that is, the state q is entered, then (M, w) 
halts. If A says no, then (M, w) does not halt.



Example 11.2: The Blank-Tape Halting Problem

Given a Turing machine M, determine whether or not M halts 
if started with a blank tape

• To show that the problem is undecidable,

• Given a machine M and input string w, construct from M and 
w a new machine Mw that starts with a blank tape, writes w 
on it, and acts like M

• Clearly, Mw will halt on a blank tape if and only if M halts on w

• If we start with Mw and apply the blank-tape halting problem 
algorithm to it, we would have an algorithm for the halting 
problem

• Since the halting problem is known to be undecidable, the 
same must be true for the blank-tape version 



The Undecidability of the Blank-Tape Halting 
Problem

• Figure 12.3 illustrates the process used to establish the result that 
the blank-tape halting problem is undecidable

• After Mw is built, the presumed blank-tape halting problem 
algorithm would be applied to Mw, yielding an algorithm for the 
halting problem, which leads to a contradiction



Undecidable Problems for Recursively 
Enumerable Languages

• As illustrated before, there is no membership algorithm 
for recursively enumerable languages

• Recursively enumerable languages are so general that 
most related questions are undecidable

• Usually, there is a way to reduce the halting problem to 
questions regarding recursively enumerable languages, 
such as

• Is the language generated by an unrestricted grammar 
empty?

• Is the language accepted by a Turing machine finite? 



Is the Language Generated by an Unrestricted 
Grammar Empty?

• Given an unrestricted grammar G, determine whether or not L(G) 
is empty

• To show that the problem is undecidable,
• Given a Turing machine M and string w, modify M to create a new 

machine Mw, so that Mw saves its input on a special part of its tape, 
and then acts as M. Whenever M enters a final state, it accepts the 
input only if the input is equal to w. Clearly, L(Mw) = L(M)  { w },

• Construct a grammar Gw that generates L(Mw). So L(Gw) = L(Mw) is 
nonempty iff w  L(M).

• Assuming there is an algorithm A for deciding whether or not an 
arbitrary L(G) is empty, we could apply it to Gw, which would give us 
a membership algorithm for any recursively enumerable language

• But this contradicts previous results that have established there is 
no such membership algorithm.



The Undecidability of the “L(G) = ” Problem

• Figure 12.5 illustrates the process used to establish the result that 
the “L(G) = ” problem is undecidable

• After Gw is built, the presumed emptiness algorithm A would be 
applied to Gw, giving a membership algorithm for recursively 
enumerable languages, which is impossible



Is the Language Accepted by a Turing Machine 
finite?

• Given a Turing machine M, determine whether or not L(M) is finite

• To show that the problem is undecidable,
• Given a Turing machine M and string w, modify M to create a new 

machine ෡𝑀, as below. 

• ෡𝑀 generates w on an unused portion of its tape and perform the same 
computations as M starting with 𝑞0𝑤. 

• if M halts in any configuration, then ෡𝑀 halts in a final state and 
accepts all its inputs.

• If M does not halt, then ෡𝑀 will not halt either.

• As a result, ෡𝑀 either accepts  or the infinite language +

• Assuming there is an algorithm A for deciding whether or not L(M) is 
finite, we could apply it to ෡𝑀, which would give us a solution to the 
halting problem

• But this contradicts previous results that have established that the 
halting problem is undecidable



The Undecidability of the “L(M) is Finite” Problem

• Figure 12.6 illustrates the process used to establish the result that 
the “L(M) is finite” question is undecidable

• After an algorithm generates ෡𝑀, the presumed finiteness 
algorithm A would be applied to ෡𝑀, resulting in a solution to the 
halting problem, which is impossible



The Post Correspondence Problem

• Given two sequences of n strings on some alphabet , for instance

A = w1, w2, …, wn and B = v1, v2, …, vn

there is a Post correspondence solution (PC solution) for the pair 
(A, B) if there is a nonempty sequence of integers i, j, …, k, such 
that wiwj…wk = vivj…vk

• As shown in Example 12.5, assume A and B consist of

w1 = 11, w2, = 100, w3 = 111 and v1 = 111, v2, = 001, v3 = 11

A PC solution for this instance of (A, B) exists, as shown below



The Undecidability of the Post Correspondence 
Problem

• The Post correspondence problem is to devise an 
algorithm that determines, for any (A, B) pair, whether or 
not there exists a PC solution

• For example, there is no PC solution if A and B consist of

w1 = 00, w2, = 001, w3 = 1000 and v1 = 0, v2, = 11, v3 = 011

• Theorem 12.7 states that there is no algorithm to decide if 
a solution sequence exists under all circumstances, so the 
Post correspondence problem is undecidable

• Although a proof of theorem 12.7 is quite lengthy, this 
very important result is crucial for showing the 
undecidability of various problems involving context-free 
languages



Undecidable Problems for Context-Free 
Languages

• The Post correspondence problem is a convenient tool to 
study some questions involving context-free languages

• The following questions, among others, can be shown to 
be undecidable
• Given an arbitrary context-free grammar G, is G ambiguous?

• Given arbitrary context-free grammars G1 and G2, 

is L(G1)  L(G2) = ?

• Given arbitrary context-free grammars G1 and G2, 

is L(G1) = L(G2)?

• Given arbitrary context-free grammars G1 and G2, 

is L(G1)  L(G2)?


