
1

Automata, Computability, and
Formal Language

CS 4410

Dr. Xuejun Liang

Chapter 12: Limits of Algorithmic Computation

2

Chapter 12: Limits of Algorithmic Computation

1. Some Problems That Cannot Be Solved By Turing
Machines

• Computability and Decidability

• The Turing Machine Halting Problems

• Reducing One Undecidable Problem to Another

2. Undecidable Problems for Recursively Enumerable
Languages

3. The Post Correspondence Problem

4. Undecidable Problems for Context-Free Languages

5. A Question of Efficiency

Learning Objectives
At the conclusion of the chapter, the student will be able to:

1. Explain and differentiate the concepts of computability and
decidability

2. Define the Turing machine halting problem

3. Discuss the relationship between the halting problem and recursively
enumerable languages

4. Give examples of undecidable problems regarding Turing machines to
which the halting problem can be reduced

5. Give examples of undecidable problems regarding recursively
enumerable languages

6. Determine if there is a solution to an instance of the Post
correspondence problem

7. Give examples of undecidable problems regarding context-free
languages

Computability and Decidability

• Are there questions which are clearly and precisely stated,
yet have no algorithmic solution?

• As stated in chapter 9, a function f is computable if there
exists a Turing machine that computes the value of f for all
arguments in its domain

• Since there may be a Turing machine that can compute f for
part of the domain, it is crucial to define the domain of f
precisely

• The concept of decidability applies to computations that
result in a “yes” or “no” answer: a problem is decidable if
there exists a Turing machine that gives the correct answer
for every instance in the domain

The Turing Machine Halting Problem (1)

• The Turing machine halting problem can be stated as: Given
the description of a Turing machine M and an input string w,
does M, when started in the initial configuration q0w,
perform a computation that eventually halts?

• The domain of the problem is the set of all Turing machines
and all input strings.

• Any attempts to simulate the computation on a universal
Turing machine face the problem of not knowing if/when M
has entered an infinite loop

• By Theorem 12.1, there does not exist any Turing machine
that finds the correct answer in all instances; the halting
problem is therefore undecidable

The Turing Machine Halting Problem (2)

• Definition 12.1 (The Halting Problem)

Let wM be a string that describes a Turing machine M = (Q, Σ, Γ, δ,
q0, , F), and let w be a string in M’s alphabet. We will assume
that wM and w are encoded as a string of 0’s and 1’s, as suggested
in Section 10.4. A solution of the halting problem is a Turing
machine H, which for any wM and w performs the computation

if M applied to w halts, and

if M applied to w does not halt. Here qy and qn are both final
states of H.

The Turing Machine Halting Problem (3)

• Theorem 12.1

There does not exist any Turing machine H that behaves as
required by Definition 12.1. The halting problem is therefore
undecidable.

• Idea of Proof

M halts

M does not halt
H H’

The Turing Machine Halting Problem (4)

෡𝐻
M halts if applied to wM

M does not halt if applied to wM

෡𝐻
෡𝐻 halts if applied to ෝ𝑤

෡𝐻 does not halt if applied to ෝ𝑤

The Halting Problem and Recursively
Enumerable Languages

Theorem 12.2 states that, if the halting problem were decidable,
then every recursively enumerable language would be recursive

• Assume that L is a recursively enumerable language and M is a
Turing machine that accepts L

• Let H be a Turing machine that solves the halting problem, then we
can apply H to the accepting machine M (i.e. 𝑤𝑀𝑤)

• If H concludes that M does not halt, then 𝑤 is not in L

• If H concludes that M halts, then M will determine If 𝑤 is in L

• Consequently, we would have a membership algorithm for L. This
makes L recursive.

But we already know that there are recursively enumerable languages
that are not recursive. The contradiction implies that H cannot exist,
that is, that the halting problem is undecidable

Reducing One Undecidable Problem to
Another

• A problem A is reduced to a problem B if the decidability
of A follows from the decidability of B

• An example is the state-entry problem: given any Turing
machine M and string w, decide whether or not the state
q is ever entered when M is applied to w

• If we had an algorithm that solves the state-entry
problem, it could be used to solve the halting problem

• However, because the halting problem is undecidable,
the state-entry problem must also be undecidable

Example 12.1: Reduce the halting problem to
the state-entry problem

• The state-entry problem (M, q, w)

If the state q is ever entered when M is applied to w?

• Suppose that we have an algorithm A that solves the
state-entry problem

• Given any M and w, modify M to get ෡𝑀 in such a way that
෡𝑀 halts in q if and only if M halts by doing

• If 𝛿(𝑞𝑖 , 𝑎) is undefined in M, define in ෡𝑀: 𝛿 𝑞𝑖 , 𝑎 = (𝑞, 𝑎, 𝑅),
where q is a final state.

• Apply the state-entry algorithm A to (෡𝑀, q, w)

• If A answers yes, that is, the state q is entered, then (M, w)
halts. If A says no, then (M, w) does not halt.

Example 11.2: The Blank-Tape Halting Problem

Given a Turing machine M, determine whether or not M halts
if started with a blank tape

• To show that the problem is undecidable,

• Given a machine M and input string w, construct from M and
w a new machine Mw that starts with a blank tape, writes w
on it, and acts like M

• Clearly, Mw will halt on a blank tape if and only if M halts on w

• If we start with Mw and apply the blank-tape halting problem
algorithm to it, we would have an algorithm for the halting
problem

• Since the halting problem is known to be undecidable, the
same must be true for the blank-tape version

The Undecidability of the Blank-Tape Halting
Problem

• Figure 12.3 illustrates the process used to establish the result that
the blank-tape halting problem is undecidable

• After Mw is built, the presumed blank-tape halting problem
algorithm would be applied to Mw, yielding an algorithm for the
halting problem, which leads to a contradiction

Undecidable Problems for Recursively
Enumerable Languages

• As illustrated before, there is no membership algorithm
for recursively enumerable languages

• Recursively enumerable languages are so general that
most related questions are undecidable

• Usually, there is a way to reduce the halting problem to
questions regarding recursively enumerable languages,
such as

• Is the language generated by an unrestricted grammar
empty?

• Is the language accepted by a Turing machine finite?

Is the Language Generated by an Unrestricted
Grammar Empty?

• Given an unrestricted grammar G, determine whether or not L(G)
is empty

• To show that the problem is undecidable,
• Given a Turing machine M and string w, modify M to create a new

machine Mw, so that Mw saves its input on a special part of its tape,
and then acts as M. Whenever M enters a final state, it accepts the
input only if the input is equal to w. Clearly, L(Mw) = L(M)  { w },

• Construct a grammar Gw that generates L(Mw). So L(Gw) = L(Mw) is
nonempty iff w  L(M).

• Assuming there is an algorithm A for deciding whether or not an
arbitrary L(G) is empty, we could apply it to Gw, which would give us
a membership algorithm for any recursively enumerable language

• But this contradicts previous results that have established there is
no such membership algorithm.

The Undecidability of the “L(G) = ” Problem

• Figure 12.5 illustrates the process used to establish the result that
the “L(G) = ” problem is undecidable

• After Gw is built, the presumed emptiness algorithm A would be
applied to Gw, giving a membership algorithm for recursively
enumerable languages, which is impossible

Is the Language Accepted by a Turing Machine
finite?

• Given a Turing machine M, determine whether or not L(M) is finite

• To show that the problem is undecidable,
• Given a Turing machine M and string w, modify M to create a new

machine ෡𝑀, as below.

• ෡𝑀 generates w on an unused portion of its tape and perform the same
computations as M starting with 𝑞0𝑤.

• if M halts in any configuration, then ෡𝑀 halts in a final state and
accepts all its inputs.

• If M does not halt, then ෡𝑀 will not halt either.

• As a result, ෡𝑀 either accepts  or the infinite language +

• Assuming there is an algorithm A for deciding whether or not L(M) is
finite, we could apply it to ෡𝑀, which would give us a solution to the
halting problem

• But this contradicts previous results that have established that the
halting problem is undecidable

The Undecidability of the “L(M) is Finite” Problem

• Figure 12.6 illustrates the process used to establish the result that
the “L(M) is finite” question is undecidable

• After an algorithm generates ෡𝑀, the presumed finiteness
algorithm A would be applied to ෡𝑀, resulting in a solution to the
halting problem, which is impossible

The Post Correspondence Problem

• Given two sequences of n strings on some alphabet , for instance

A = w1, w2, …, wn and B = v1, v2, …, vn

there is a Post correspondence solution (PC solution) for the pair
(A, B) if there is a nonempty sequence of integers i, j, …, k, such
that wiwj…wk = vivj…vk

• As shown in Example 12.5, assume A and B consist of

w1 = 11, w2, = 100, w3 = 111 and v1 = 111, v2, = 001, v3 = 11

A PC solution for this instance of (A, B) exists, as shown below

The Undecidability of the Post Correspondence
Problem

• The Post correspondence problem is to devise an
algorithm that determines, for any (A, B) pair, whether or
not there exists a PC solution

• For example, there is no PC solution if A and B consist of

w1 = 00, w2, = 001, w3 = 1000 and v1 = 0, v2, = 11, v3 = 011

• Theorem 12.7 states that there is no algorithm to decide if
a solution sequence exists under all circumstances, so the
Post correspondence problem is undecidable

• Although a proof of theorem 12.7 is quite lengthy, this
very important result is crucial for showing the
undecidability of various problems involving context-free
languages

Undecidable Problems for Context-Free
Languages

• The Post correspondence problem is a convenient tool to
study some questions involving context-free languages

• The following questions, among others, can be shown to
be undecidable
• Given an arbitrary context-free grammar G, is G ambiguous?

• Given arbitrary context-free grammars G1 and G2,

is L(G1)  L(G2) = ?

• Given arbitrary context-free grammars G1 and G2,

is L(G1) = L(G2)?

• Given arbitrary context-free grammars G1 and G2,

is L(G1)  L(G2)?

