CS 4410

Automata, Computability, and Formal Language

Dr. Xuejun Liang

1

Chapter 9

Turing Machines

1. The Standard Turing Machine

- Definition of a Turing Machine
- Turing Machines as Language Accepters
- Turing Machines as Transducers
- 2. Combining Turing Machines for Complicated Tasks
- 3. Turing's Thesis

Learning Objectives

At the conclusion of the chapter, the student will be able to:

- Describe the components of a standard Turing machine
- State whether an input string is accepted by a Turing machine
- Construct a Turing machine to accept a specific language
- Trace the operation of a Turing machine transducer given a sample input string
- Construct a Turing machine to compute a simple function
- State Turing's thesis and discuss the circumstantial evidence supporting it

Definition of a Turing Machine

Definition 9.1: A **Turing machine** M is defined by $M=(Q, \Sigma, \Gamma, \delta, q_0, \Box, F)$

where

Q is a finite set of **internal states**,

 Σ is the **input alphabet**,

 Γ is a finite set of symbols called the **tape alphabet**,

 $δ: Q×Γ→Q×Γ×{L, R}$ is the **transition function**,

 $q_0 \in Q$ is the **initial state**,

 $\Box \in \Gamma$ is a special symbol called **blank**,

 $F \subseteq Q$ is the set of **final states**

- The tape acts as the input, output, and storage medium.
- The read-write head can travel in both directions, processing one symbol per move
- Input string is surrounded by blanks, so $\Sigma \subseteq \Gamma \{\Box\}$

Definition of a Turing Machine

Transition function: $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}$

- Input to δ consists of the current state of the control unit and the current tape symbol
- Output of δ consists of a new state, new tape symbol, and location of the next symbol to be read (L or R)
- δ is a partial function, so that some (state, symbol) input combinations may be undefined
- δ causes the machine to change states and possibly overwrite the tape contents

Configuration: tape symbols, state, tape head position

Halt: it reaches to a configuration for which δ is not defined

Computation: The sequence of configurations leading to a halt state.

Example 9.1: Given the sample transition rule $\delta(q_0, a) = (q_1, d, R)$

According to this rule, when the control unit is in state q_0 and the tape symbol is a, the new state is q_1 , the symbol d replaces a on the tape, and the read-write head moves one cell to the right

 $q_0 abc \mid -dq_1 bc$

Example 9.2: Given $Q = \{q_0, q_1\}, \Sigma = \{a, b\}, \Gamma = \{a, b, \Box\}, F = \{q_1\}$

- The machine starts in q₀ and, as long as it reads a's, will replace them with b's and continue moving to the right, but b's will not be modified
- When a blank is found, the control unit switches states to q₁ and moves one cell to the left
- The machine halts whenever it reaches a configuration for which δ is not defined (in this case, state q₁)

Example 9.2: Given $Q = \{q_0, q_1\}, \Sigma = \{a, b\}, \Gamma = \{a, b, \Box\}, F = \{q_1\}$

A sequence of moves as the machine processes a tape with initial contents aa

 $q_0aa\Box \models bq_0a\Box \models bbq_0\Box \models bq_1b\Box$

Transition Graphs for Turing Machines

- In a Turing machine transition graph, each edge is labeled with three items: current tape symbol, new tape symbol, and direction of the head move
- Figure 9.4 shows the transition graph for the Turing Machine in Example 9.2

A Turing Machine that Never Halts

It is possible for a Turing machine to never halt on certain inputs, as is the case with Example 9.3 (below) and input string ab

Example 9.3: Given $Q = \{q_0, q_1\}, \Sigma = \{a, b\}, \Gamma = \{a, b, \Box\}, F = \{\}$

This machine with input string ab runs forever —in an infinite loopwith the read-write head moving alternately right and left, but making no modifications to the tape

Standard Turing Machine

- 1. One tape unbounded in both directions
- 2. Deterministic: At most one move for each configuration
- 3. No special input file and No special output device

Configuration (Instantaneous description):

$$x_1qx_2$$
 (or $a_1a_2...a_{k-1}qa_ka_{k+1}...a_n$)
 $a_1...a_{k-1}a_ka_ka_{k-1}a_ka_ka_{k-1}a_ka_ka_{k-1}a_ka_ka_{k-1}a_ka_ka_{k-1}a_ka_ka_{k-1}a_ka_ka_{k-1}a_ka_ka_{k-1}a_ka_ka_{k-1}a_ka_ka_{k-1}a_ka_ka_{k-1}a_ka_ka_{k-1}a_ka_{k-1$

Move from one configuration to another: $abq_1cd \mid - abeq_2d$ (if $\delta(q_1, c) = (q_2, e, R)$)

 $abq_1cd \mid -aq_2bed$ (if $\delta(q_1, c) = (q_2, e, L)$)

Example 9.4, 9.5: Configurations and moves in Example 9.2

A sequence of moves with initial tape contents aa

Turing Machines as Language Accepters

Definition 9.3: Let M=(Q, Σ , Γ , δ , q_0 , \Box , F) be a Turing machine. Then the language accepted by M is

$$L(M) = \{ w \in \Sigma^+ : q_0 w \mid \stackrel{*}{\leftarrow} x_1 q_f x_2 \text{ for some } g_f \in F, x_1, x_2 \in \Gamma^* \}$$

- Turing machines can be viewed as language accepters
- The language accepted by a Turing machine is the set of all strings which cause the machine to halt in a final state, when started in its standard initial configuration (q_0 , leftmost input symbol)
- A string is rejected if
 - The machine halts in a nonfinal state, or
 - The machine never halts

Example 9.6: For $\Sigma = \{0, 1\}$, design a Turing machine M such that L(M)=L(00*) Q= $\{q_0, q_1, q_2\}$, F= $\{q_2\}$, $\Gamma = \{0, 1, \Box\}$,

Example 9.7: For $\Sigma = \{0, 1\}$, design a Turing machine that accept $L = \{a^{n}b^{n} : n \ge 1\}$ $Q = \{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\}, F = \{q_{4}\}, \Gamma = \{a, b, x, y, \Box\}$

Example 9.7: For $\Sigma = \{0, 1\}$, design a Turing machine that accept $L = \{a^{n}b^{n} : n \ge 1\}$ $Q = \{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\}, F = \{q_{4}\}, \Gamma = \{a, b, x, y, \Box\}$

Example 9.7: For $\Sigma = \{0, 1\}$, design a Turing machine that accept $L = \{a^{n}b^{n} : n \ge 1\}$ $Q = \{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\}, F = \{q_{4}\}, \Gamma = \{a, b, x, y, \Box\}$

Example 9.8: For $\Sigma = \{a, b, c\}$, design a Turing machine that accept $L = \{a^n b^n c^n : n \ge 1\}$ $Q = \{q_0, q_1, q_2, q_3, q_4\}, F = \{q_4\}, \Gamma = \{a, b, c, x, y, z, \Box\}$

X

 \checkmark

Turing Machines as Transducers

Definition 9.3: A function f with domain D is said to be Turing-computable or just computable if there exists some Turing machine $M=(Q,\Sigma,\Gamma,\delta,q_0,\Box,F)$ such that for all $w \in D$

 $q_0w \mid \stackrel{*}{=} q_f f(w), \ q_f \in F$

- Turing machines provide an abstract model for digital computers, acting as a transducer that transforms input into output
- A *Turing machine transducer* implements a function that treats the original contents of the tape as its input and the final contents of the tape as its output
- A function is *Turing-computable* if it can be carried out by a Turing machine capable of processing all values in the function domain

Example 9.9: Given two positive integers x and y, design a Turing machine that computes x + y.

x is encoded by its uniary representation w(x)

+ is represented by 0

x + y is encoded by w(x)0w(y)

 $q_0w(x)0w(y) \mid \stackrel{*}{-} q_fw(x+y)$

- The transducer has Q = { q₀, q₁, q₂, q₃, q₄ } with initial state q₀ and final state q₄
- The defined values of the transition function are

$$\begin{split} \delta(q_0, 1) &= (q_0, 1, R) \\ \delta(q_1, 1) &= (q_1, 1, R) \\ \delta(q_2, 1) &= (q_3, \Box, L) \\ \delta(q_3, \Box) &= (q_4, \Box, R) \end{split} \qquad \begin{array}{l} \delta(q_0, 0) &= (q_1, 1, R) \\ \delta(q_0, 0) &= (q_1, 1, R) \\ \delta(q_1, \Box) &= (q_2, \Box, L) \\ \delta(q_3, 1) &= (q_3, 1, L) \end{array}$$

 When the machine halts, the read-write head is positioned on the leftmost symbol of the unary representation of x + y Example 9.10: Design a Turing machine that copies strings of 1's. More precisely, find a machine that perform the computation $q_0 w \mid \stackrel{*}{=} q_f w w$

for any $w \in \{1\}^+$

Example 9.11: Let x and y be two positive integers represented in unary notation. Construct a Turing machine that will halt in a final state q_y if $x \ge y$, and that will halt in a non-final state q_n if x < y.

$$q_0 w(x) 0 w(y) \stackrel{*}{\models} q_y w(x) 0 w(y), \quad if \ x \ge y,$$

$$q_0 w(x) 0 w(y) \stackrel{*}{\models} q_n w(x) 0 w(y), \quad if \ x < y.$$

Example 9.11: Let x and y be two positive integers represented in unary notation. Construct a Turing machine that will halt in a final state q_y if $x \ge y$, and that will halt in a non-final state q_n if x < y.

$$q_0 111011 \stackrel{*}{\vdash} q_y 111011, \qquad x = 3 \text{ and } y = 2,$$

 $q_0 110111 \stackrel{*}{\vdash} q_n 110111, \qquad x = 2 \text{ and } y = 3.$

Combining Turing Machines for Complicated Tasks

Example 9.12: Design a Turing machine that computes the function

$$f(x, y) = x + y, \quad if \ x \ge y,$$

= 0, $if \ x < y.$ x,y Comparer
C C E E C E C

 $\begin{aligned} q_{C,0} w(x) 0 w(y) &\stackrel{*}{\vdash} q_{A,0} w(x) 0 w(y), & if \ x \ge y, \\ q_{C,0} w(x) 0 w(y) &\stackrel{*}{\vdash} q_{E,0} w(x) 0 w(y), & if \ x < y. \end{aligned}$

 $q_{A,0} \mathbf{w}(\mathbf{x}) \mathbf{0} \mathbf{w}(\mathbf{y}) \stackrel{*}{\vdash} q_{A,f} \mathbf{w}(\mathbf{x}) \mathbf{w}(\mathbf{y}) \mathbf{0}$ $q_{E,0} \mathbf{w}(\mathbf{x}) \mathbf{0} \mathbf{w}(\mathbf{y}) \stackrel{*}{\vdash} q_{E,f} \mathbf{0}$

Combining Turing Machines for Complicated Tasks (Cont.)

Example 9.13: Consider the instruction: If a then q_i else q_k .

$$\begin{split} \delta(\mathbf{q}_{i},\mathbf{a}) &= (\mathbf{q}_{j0},\mathbf{a},\mathbf{R}) \quad \text{for all } \mathbf{q}_{i} \in \mathbf{Q}, \\ \delta(\mathbf{q}_{i},\mathbf{b}) &= (\mathbf{q}_{k0},\mathbf{b},\mathbf{R}) \quad \text{for all } \mathbf{q}_{i} \in \mathbf{Q} \text{ and all } \mathbf{b} \in \Gamma - \{a\}, \\ \delta(\mathbf{q}_{j0},\mathbf{c}) &= (\mathbf{q}_{j},\mathbf{c},\mathbf{L}) \quad \text{for all } \mathbf{c} \in \Gamma, \\ \delta(\mathbf{q}_{k0},\mathbf{a}) &= (\mathbf{q}_{k},\mathbf{c},\mathbf{L}) \quad \text{for all } \mathbf{c} \in \Gamma. \end{split}$$

Turing's Thesis

Turing thesis (a hypothesis): Any computation that can be carried out by mechanical means can be performed by some Turing machine.

A computation is mechanical if and only if it can be performed by some Turing machine.

- 1. Anything that can be done on any existing digital computer can also be done by a Turing machine.
- 2. No one has yet been able to suggest a problem, solvable by what we intuitively consider an algorithm, for which a Turing machine program cannot be written.
- 3. Alternative models have been proposed for mechanical computation, but none of them are more powerful than the Turing machine model.

Turing's Thesis (Cont.)

An acceptance of Turing's Thesis leads to a definition of an algorithm:

Definition 9.3: An algorithm for a function $f: D \rightarrow R$ is a Turing machine M, which given as input any $d \in D$ on its tape, eventually halts with the correct answer f(d) on its tape. Specially, we can require that

for all $d \in D$ $q_0 d \mid_M^* q_f(d), q_f \in F$