CS 4410

Automata, Computability, and Formal Language

Dr. Xuejun Liang

Chapter 9

Turing Machines

1. The Standard Turing Machine

- Definition of a Turing Machine
- Turing Machines as Language Accepters
- Turing Machines as Transducers

2. Combining Turing Machines for Complicated Tasks
3. Turing's Thesis

Learning Objectives

At the conclusion of the chapter, the student will be able to:

- Describe the components of a standard Turing machine
- State whether an input string is accepted by a Turing machine
- Construct a Turing machine to accept a specific language
- Trace the operation of a Turing machine transducer given a sample input string
- Construct a Turing machine to compute a simple function
- State Turing's thesis and discuss the circumstantial evidence supporting it

Definition of a Turing Machine

Definition 9.1: A Turing machine M is defined by

$$
\mathrm{M}=\left(\mathrm{Q}, \Sigma, \Gamma, \delta, \mathrm{q}_{0}, \square, \mathrm{~F}\right)
$$

where
Q is a finite set of internal states,
Σ is the input alphabet,
Γ is a finite set of symbols called the tape alphabet,
$\delta: \mathrm{Q} \times \Gamma \rightarrow \mathrm{Q} \times \Gamma \times\{\mathrm{L}, \mathrm{R}\}$ is the transition function,
$\mathrm{q}_{0} \in \mathrm{Q}$ is the initial state,
$\square \in \Gamma$ is a special symbol called blank,
$\mathrm{F} \subseteq \mathrm{Q}$ is the set of final states

- The tape acts as the input, output, and storage medium.
- The read-write head can travel in both directions, processing one symbol per move
- Input string is surrounded by blanks, so $\Sigma \subseteq \Gamma-\{\square\}$

FIGURE 9.1

Definition of a Turing Machine

Transition function: $\delta: \mathrm{Q} \times \Gamma \rightarrow \mathrm{Q} \times \Gamma \times\{\mathrm{L}, \mathrm{R}\}$

- Input to δ consists of the current state of the control unit and the current tape symbol
- Output of δ consists of a new state, new tape symbol, and location of the next symbol to be read (L or R)
- δ is a partial function, so that some (state, symbol) input combinations may be undefined
- δ causes the machine to change states and possibly overwrite the tape contents

Configuration: tape symbols, state, tape head position
Halt: it reaches to a configuration for which δ is not defined
Computation: The sequence of configurations leading to a halt state.

Examples

Example 9.1: Given the sample transition rule

$$
\delta\left(\mathrm{q}_{0}, \mathrm{a}\right)=\left(\mathrm{q}_{1}, \mathrm{~d}, \mathrm{R}\right)
$$

According to this rule, when the control unit is in state q_{0} and the tape symbol is a, the new state is q_{1}, the symbol d replaces a on the tape, and the read-write head moves one cell to the right

Configuration before the move
$q_{0} a b c \mid-d_{1} b c$

Configuration
after the move

Examples

Example 9.2: \quad Given $Q=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\}, \Sigma=\{\mathrm{a}, \mathrm{b}\}, \Gamma=\{\mathrm{a}, \mathrm{b}, \square\}, \mathrm{F}=\left\{\mathrm{q}_{1}\right\}$

$$
\begin{aligned}
& \delta\left(\mathrm{q}_{0}, \mathrm{a}\right)=\left(\mathrm{q}_{0}, \mathrm{~b}, \mathrm{R}\right) \\
& \delta\left(\mathrm{q}_{0}, \mathrm{~b}\right)=\left(\mathrm{q}_{0}, \mathrm{~b}, \mathrm{R}\right) \\
& \delta\left(\mathrm{q}_{0}, \square\right)=\left(\mathrm{q}_{1}, \square, \mathrm{~L}\right)
\end{aligned}
$$

Q, ロ, L
q_{1}

FIGURE 9.4

- The machine starts in q_{0} and, as long as it reads a's, will replace them with b's and continue moving to the right, but b's will not be modified
- When a blank is found, the control unit switches states to q_{1} and moves one cell to the left
- The machine halts whenever it reaches a configuration for which δ is not defined (in this case, state q_{1})

Examples

Example 9.2: Given $\mathrm{Q}=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\}, \Sigma=\{\mathrm{a}, \mathrm{b}\}, \Gamma=\{\mathrm{a}, \mathrm{b}, \square\}, \mathrm{F}=\left\{\mathrm{q}_{1}\right\}$

$$
\begin{aligned}
& \delta\left(\mathrm{q}_{0}, \mathrm{a}\right)=\left(\mathrm{q}_{0}, \mathrm{~b}, \mathrm{R}\right) \\
& \delta\left(\mathrm{q}_{0}, \mathrm{~b}\right)=\left(\mathrm{q}_{0}, \mathrm{~b}, \mathrm{R}\right) \\
& \delta\left(\mathrm{q}_{0}, \square\right)=\left(\mathrm{q}_{1}, \square, \mathrm{~L}\right)
\end{aligned}
$$

FIGURE 9.4

A sequence of moves as the machine processes a tape with initial contents aa

$$
\mathrm{q}_{0} \mathrm{aa} \square\left|-\mathrm{bq}_{0} \mathrm{a} \square\right|-\mathrm{bbq}_{0} \square \mid-\mathrm{bq}_{1} \mathrm{~b} \square
$$

Transition Graphs for Turing Machines

- In a Turing machine transition graph, each edge is labeled with three items: current tape symbol, new tape symbol, and direction of the head move
- Figure 9.4 shows the transition graph for the Turing Machine in Example 9.2

FIGURE 9.4

A Turing Machine that Never Halts

It is possible for a Turing machine to never halt on certain inputs, as is the case with Example 9.3 (below) and input string ab

Example 9.3: Given $\mathrm{Q}=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\}, \Sigma=\{\mathrm{a}, \mathrm{b}\}, \Gamma=\{\mathrm{a}, \mathrm{b}, \square\}, \mathrm{F}=\{ \}$

$$
\begin{aligned}
& \delta\left(\mathrm{q}_{0}, a\right)=\left(\mathrm{q}_{1}, \mathrm{a}, \mathrm{R}\right) \\
& \delta\left(\mathrm{q}_{0}, \mathrm{~b}\right)=\left(\mathrm{q}_{1}, \mathrm{~b}, \mathrm{R}\right) \\
& \delta\left(\mathrm{q}_{0}, \square\right)=\left(\mathrm{q}_{1}, \square, \mathrm{R}\right) \\
& \delta\left(\mathrm{q}_{1}, \mathrm{a}\right)=\left(\mathrm{q}_{0}, \mathrm{a}, \mathrm{~L}\right) \\
& \delta\left(\mathrm{q}_{1}, \mathrm{~b}\right)=\left(\mathrm{q}_{0}, \mathrm{~b}, \mathrm{~L}\right) \\
& \delta\left(\mathrm{q}_{1}, \square\right)=\left(\mathrm{q}_{0}, \square, \mathrm{~L}\right)
\end{aligned}
$$

FIGURE 9.5

This machine with input string ab runs forever -in an infinite loopwith the read-write head moving alternately right and left, but making no modifications to the tape

Standard Turing Machine

1. One tape unbounded in both directions
2. Deterministic: At most one move for each configuration
3. No special input file and No special output device

Configuration (Instantaneous description): $x_{1} q x_{2}\left(\right.$ or $\left.a_{1} a_{2} \ldots a_{k-1} q a_{k} a_{k+1} \ldots a_{n}\right)$

Move from one configuration to another:

$$
\begin{array}{ll}
\operatorname{abq}_{1} c d-\text { abeq }_{2} d & \left(\text { if } \delta\left(q_{1}, c\right)=\left(q_{2}, e, R\right)\right) \\
a_{2} q_{1} c d-a q_{2} \text { bed } & \left(\text { if } \delta\left(q_{1}, c\right)=\left(q_{2}, e, L\right)\right)
\end{array}
$$

Examples

Example 9.4, 9.5: Configurations and moves in Example 9.2

$$
\begin{aligned}
& \text { Example } 9.2 \\
& \delta\left(\mathrm{q}_{0}, \mathrm{a}\right)=\left(\mathrm{q}_{0}, \mathrm{~b}, \mathrm{R}\right) \\
& \delta\left(\mathrm{q}_{0}, \mathrm{~b}\right)=\left(\mathrm{q}_{0}, \mathrm{~b}, \mathrm{R}\right) \\
& \delta\left(\mathrm{q}_{0}, \square\right)=\left(\mathrm{q}_{1}, \square, \mathrm{~L}\right)
\end{aligned}
$$

FIGURE 9.4
A sequence of moves with initial tape contents aa

q_{0}		
	a	a

Configurations: $\mathrm{q}_{0} \mathrm{aa} \square$
$\mathrm{bbq}_{0} \square \quad \mathrm{bq}_{1} \mathrm{~b} \square$
Moves: $\quad \mathrm{q}_{0} \mathrm{aa} \square\left|-\mathrm{bq}_{0} \mathrm{a} \square\right|-\mathrm{bbq}_{0} \square \mid-\mathrm{bq}_{1} \mathrm{~b} \square$

Turing Machines as Language Accepters

Definition 9.3: Let $\mathrm{M}=\left(\mathrm{Q}, \Sigma, \Gamma, \delta, \mathrm{q}_{0}, \square, \mathrm{~F}\right)$ be a Turing machine. Then the language accepted by M is

$$
\mathrm{L}(\mathrm{M})=\left\{\mathrm{w} \in \Sigma^{+}:\left.\mathrm{q}_{0} \mathrm{w}\right|^{*} \mathrm{x}_{1} \mathrm{q}_{\mathrm{f}} \mathrm{x}_{2} \text { for some } \mathrm{g}_{\mathrm{f}} \in \mathrm{~F}, \mathrm{x}_{1}, \mathrm{x}_{2} \in \Gamma^{*}\right\}
$$

- Turing machines can be viewed as language accepters
- The language accepted by a Turing machine is the set of all strings which cause the machine to halt in a final state, when started in its standard initial configuration (q_{0}, leftmost input symbol)
- A string is rejected if
- The machine halts in a nonfinal state, or
- The machine never halts

Examples

Example 9.6: For $\Sigma=\{0,1\}$, design a Turing machine M such that $\mathrm{L}(\mathrm{M})=\mathrm{L}\left(00^{*}\right)$

$$
\mathrm{Q}=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}, \mathrm{q}_{2}\right\}, \mathrm{F}=\left\{\mathrm{q}_{2}\right\}, \Gamma=\{0,1, \square\},
$$

Example 9.7: For $\Sigma=\{0,1\}$, design a Turing machine that accept

$$
\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{~b}^{\mathrm{n}}: \mathrm{n} \geq 1\right\}
$$

$$
\mathrm{Q}=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{3}, \mathrm{q}_{4}\right\}, \mathrm{F}=\left\{\mathrm{q}_{4}\right\}, \Gamma=\{\mathrm{a}, \mathrm{~b}, \mathrm{x}, \mathrm{y}, \square\}
$$

Example 9.7: For $\Sigma=\{0,1\}$, design a Turing machine that accept

$$
\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{~b}^{\mathrm{n}}: \mathrm{n} \geq 1\right\}
$$

$$
\mathrm{Q}=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{3}, \mathrm{q}_{4}\right\}, \mathrm{F}=\left\{\mathrm{q}_{4}\right\}, \Gamma=\{\mathrm{a}, \mathrm{~b}, \mathrm{x}, \mathrm{y}, \square\}
$$

Example 9.7: For $\Sigma=\{0,1\}$, design a Turing machine that accept

$$
\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{~b}^{\mathrm{n}}: \mathrm{n} \geq 1\right\}
$$

$$
\mathrm{Q}=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{3}, \mathrm{q}_{4}\right\}, \mathrm{F}=\left\{\mathrm{q}_{4}\right\}, \Gamma=\{\mathrm{a}, \mathrm{~b}, \mathrm{x}, \mathrm{y}, \square\}
$$

Examples

Example 9.8: For $\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$, design a Turing machine that accept

$$
\begin{gathered}
\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} b^{\mathrm{n}} \mathrm{c}^{\mathrm{n}}: \mathrm{n} \geq 1\right\} \\
\mathrm{Q}=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{3}, \mathrm{q}_{4}\right\}, \mathrm{F}=\left\{\mathrm{q}_{4}\right\}, \Gamma=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{x}, \mathrm{y}, \mathrm{z}, \square\}
\end{gathered}
$$

*

\forall

Turing Machines as Transducers

Definition 9.3: A function f with domain D is said to be Turing-computable or just computable if there exists some Turing machine $\mathrm{M}=\left(\mathrm{Q}, \Sigma, \Gamma, \delta, \mathrm{q}_{0}, \square, \mathrm{~F}\right)$ such that for all $\mathrm{w} \in \mathrm{D}$

$$
\left.\mathrm{q}_{0} \mathrm{w}\right|^{*} \mathrm{q}_{\mathrm{f}} \mathrm{f}(\mathrm{w}), \mathrm{q}_{\mathrm{f}} \in \mathrm{~F}
$$

- Turing machines provide an abstract model for digital computers, acting as a transducer that transforms input into output
- A Turing machine transducer implements a function that treats the original contents of the tape as its input and the final contents of the tape as its output
- A function is Turing-computable if it can be carried out by a Turing machine capable of processing all values in the function domain

Example 9.9: Given two positive integers x and y, design a Turing machine that computes $x+y$.

x is encoded by its uniary representation $w(x)$

+ is represented by 0
$x+y$ is encoded by $w(x) 0 w(y)$
$\left.q_{0} w(x) 0 w(y)\right|^{*} q_{f} w(x+y)$
- The transducer has $Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right\}$ with initial state q_{0} and final state q_{4}
- The defined values of the transition function are

$$
\begin{array}{ll}
\delta\left(q_{0}, 1\right)=\left(q_{0}, 1, R\right) & \delta\left(q_{0}, 0\right)=\left(q_{1}, 1, R\right) \\
\delta\left(q_{1}, 1\right)=\left(q_{1}, 1, R\right) & \delta\left(q_{1}, \square\right)=\left(q_{2}, \square, L\right) \\
\delta\left(q_{2}, 1\right)=\left(q_{3}, \square, L\right) & \delta\left(q_{3}, 1\right)=\left(q_{3}, 1, L\right) \\
\delta\left(q_{3}, \square\right)=\left(q_{4}, \square, R\right) &
\end{array}
$$

- When the machine halts, the read-write head is positioned on the leftmost symbol of the unary representation of $x+y$

Example 9.10: Design a Turing machine that copies strings of 1's. More precisely, find a machine that perform the computation

$$
\left.\mathrm{q}_{0} \mathrm{w}\right|^{*} \mathrm{q}_{\mathrm{f}} \mathrm{ww}
$$

for any $\mathrm{w} \in\{1\}^{+}$

Example 9.11: Let x and y be two positive integers represented in unary notation. Construct a Turing machine that will halt in a final state q_{y} if $x \geq y$, and that will halt in a non-final state q_{n} if $x<y$.

$$
\begin{array}{ll}
\left.q_{0} w(x) 0 w(y)\right|_{\mid} ^{*} q_{y} \mathrm{w}(\mathrm{x}) 0 \mathrm{w}(\mathrm{y}), & \text { if } x \geq y, \\
\left.q_{0} w(x) 0 w(y)\right|^{*} \\
q_{n} \mathrm{w}(\mathrm{x}) 0 \mathrm{w}(\mathrm{y}), & \text { if } x<y
\end{array}
$$

Example 9.11: Let x and y be two positive integers represented in unary notation. Construct a Turing machine that will halt in a final state q_{y} if $x \geq y$, and that will halt in a non-final state q_{n} if $x<y$.

$$
\begin{array}{ll}
\left.q_{0} 111011\right|_{-} ^{*} q_{y} 111011, & x=3 \text { and } y=2, \\
q_{0} 110111 *-q_{n} 110111, & x=2 \text { and } y=3 .
\end{array}
$$

Combining Turing Machines for Complicated Tasks

Example 9.12: Design a Turing machine that computes the function

$$
\begin{aligned}
f(x, y) & =x+y, & & \text { if } x \geq y, \\
& =0, & & \text { if } x<y .
\end{aligned}
$$

$$
\begin{array}{ll}
\left.q_{C, 0} w(x) 0 w(y)\right|^{*} q_{A, 0} \mathrm{w}(\mathrm{x}) 0 \mathrm{w}(\mathrm{y}), & \text { if } x \geq y, \\
\left.q_{C, 0} w(x) 0 w(y)\right|^{*}-q_{E, 0} \mathrm{w}(\mathrm{x}) 0 \mathrm{w}(\mathrm{y}), & \text { if } x<y . \\
\left.q_{A, 0} \mathrm{w}(\mathrm{x}) 0 \mathrm{w}(\mathrm{y})\right|^{*}-q_{A, f} \mathrm{w}(\mathrm{x}) \mathrm{w}(\mathrm{y}) 0 & \\
\left.q_{E, 0} \mathrm{w}(\mathrm{x}) 0 \mathrm{w}(\mathrm{y})\right|^{*} q_{E, f} 0
\end{array}
$$

Combining Turing Machines for Complicated Tasks (Cont.)

Example 9.13: Consider the instruction: If a then q_{j} else q_{k}.

$$
\begin{array}{ll}
\delta\left(q_{i}, a\right)=\left(q_{j}, a, R\right) & \text { for all } q_{i} \in Q, \\
\delta\left(q_{i}, b\right)=\left(q_{k}, b, R\right) & \text { for all } q_{i} \in Q \text { and all } b \in \Gamma-\{a\}, \\
\delta\left(q_{j}, c\right)=\left(q_{j}, c, L\right) & \text { for all } c \in \Gamma, \\
\delta\left(q_{k} 0, a\right)=\left(q_{k}, c, L\right) & \text { for all } c \in \Gamma .
\end{array}
$$

Consider subprogram

Turing's Thesis

Turing thesis (a hypothesis): Any computation that can be carried out by mechanical means can be performed by some Turing machine.

A computation is mechanical if and only if it can be performed by some Turing machine.

1. Anything that can be done on any existing digital computer can also be done by a Turing machine.
2. No one has yet been able to suggest a problem, solvable by what we intuitively consider an algorithm, for which a Turing machine program cannot be written.
3. Alternative models have been proposed for mechanical computation, but none of them are more powerful than the Turing machine model.

Turing's Thesis (Cont.)

An acceptance of Turing's Thesis leads to a definition of an algorithm:

Definition 9.3: An algorithm for a function $\mathrm{f}: \mathrm{D} \rightarrow \mathrm{R}$ is a Turing machine M, which given as input any $d \in D$ on its tape, eventually halts with the correct answer $\mathrm{f}(\mathrm{d})$ on its tape. Specially, we can require that
for all $d \in D$

$$
\left.\mathrm{q}_{0} \mathrm{~d}\right|_{\mathrm{M}} ^{*} \mathrm{q}_{\mathrm{f}} \mathrm{f}(\mathrm{~d}), \quad \mathrm{q}_{\mathrm{f}} \in \mathrm{~F}
$$

