CS 4410

Automata, Computability, and Formal Language

Dr. Xuejun Liang

1

Chapter 8

Properties of Context-Free Languages

1. Two Pumping Lemmas

- A Pumping Lemma for Context-Free Languages
- A Pumping Lemma for Linear Language
- 2. Closure Properties and Decision Algorithms for Context-Free Languages
 - Closure of Context-Free Languages
 - Some Decidable Properties of Context-Free Languages

Learning Objectives

At the conclusion of the chapter, the student will be able to:

- Apply the pumping lemma to show that a language is not context-free
- State the closure properties applicable to context-free languages
- Prove that context-free languages are closed under union, concatenation, and star-closure
- Prove that context-free languages are not closed under either intersection or complementation
- Describe a membership algorithm for context-free languages
- Describe an algorithm to determine if a context-free language is empty
- Describe an algorithm to determine if a context-free language is infinite

A Pumping Lemma for Context-Free Languages

Theorem 8.1: (A Pumping Lemma for Context-Free Languages) Let L be an infinite context-free language. Then there exists some positive integer m such that any $w \in L$ with $|w| \ge m$ can be decomposed as

w=uvxyz, with $|vxy| \le m$ and $|vy| \ge 1$,

such that

 $uv^ixy^iz \in L$, for all i=0, 1, 2, ...

- Every sufficiently long string w in L can be broken into five parts
 - w = uvxyz, with $|vxy| \le m$ and $|vy| \ge 1$,
- An arbitrary, but equal number of repetitions of v and y yields another string in L

• $w_i = uv^i xy^i z \in L$, for all i = 0, 1, 2, ...

• The pumping lemma can be used to show that, by contradiction, a certain language is not context-free

An Illustration of the Pumping Lemma for Context-Free Languages

As shown in Figure 8.1, the pumping lemma for context-free languages can be illustrated by sketching a general derivation tree that shows a decomposition of the string into the required components

$$S \stackrel{*}{\Rightarrow} uAz \stackrel{*}{\Rightarrow} uvAyz \stackrel{*}{\Rightarrow} uvxyz$$
$$A \stackrel{*}{\Rightarrow} vAy \qquad A \stackrel{*}{\Rightarrow} x$$

Examples: Using Pumping Lemma

Example 8.1: Show that the language $L=\{a^nb^nc^n : n\geq 0\}$ is not context-free.

Then $w_0 = uv^0 x y^0 z = a^{m-(k+l)} b^m c^m \notin L$, as $m - (k+l) \neq m$

This is a contradiction. So L is not context-free

Examples: Using Pumping Lemma (Cont.)

Example 8.1: Show that the language $L=\{a^nb^nc^n : n\geq 0\}$ is not context-free.

7

Examples: Using Pumping Lemma (Cont.)

Example 8.2: The language $L=\{ww : w \in \{a,b\}^*\}$ is not context-free.

Examples: Using Pumping Lemma (Cont.)

Example 8.3: The language $L=\{a^n!: n\geq 3\}$ is not context-free.

Given m > 2Pick $w = a^{m!} \in L$ Given w = uvxyz with $|vxy| \le m$ and $|vy| \ge 1$ So, $v = a^k$ and $y = a^l$, $1 \le k + l \le m$ Then, $w_0 = uv^0xy^0z = a^{m!-(k+l)} \notin L$,

Because $m! > m! - (k + l) \ge m! - m > (m - 1)!$

This is a contradiction. So L is not context-free

A Pumping Lemma for Linear Languages

Definition 8.1: A context-free language is said to be linear if there exists a linear context-free grammar G such that L=L(G)

Example 8.5: The language $L=\{a^nb^n : n\geq 0\}$ is linear.

Theorem 8.2: (A Pumping Lemma for Linear Languages) Let L be an infinite linear language. Then there exists some positive integer m such that any $w \in L$ with $|w| \ge m$ can be decomposed as

w=uvxyz, with $|uvyz| \le m$ and $|vy| \ge 1$,

such that

 $uv^ixy^iz \in L$, for all i=0, 1, 2, ...

Example 8.6: The language $L=\{w : n_a(w)=n_b(w)\}$ is not linear.

Closure of Context-Free Languages

Theorem 8.3: The family of context-free language is closed under union, concatenation, and star-closure.

Theorem 8.4: The family of context-free language is not closed under intersection and complementation.

Proof of Closure under Union

- Assume that L₁ and L₂ are generated by the context-free grammars
 G₁ = (V₁, T₁, S₁, P₁) and G₂ = (V₂, T₂, S₂, P₂)
- Without loss of generality, assume that the sets $\rm V_1$ and $\rm V_2$ are disjoint
- Create a new variable S_3 which is not in $V_1 \cup V_2$
- Construct a new grammar $G_3 = (V_3, T_3, S_3, P_3)$ so that
 - $V_3 = V_1 \cup V_2 \cup \{S_3\}$
 - $T_3 = T_1 \cup T_2$
 - $P_3 = P_1 \cup P_2$
- Add to P_3 a production that allows the new start symbol to derive either of the start symbols for L_1 and L_2
 - $S_3 \rightarrow S_1 \mid S_2$
- Clearly, $\rm G_3$ is context-free and generates the union of $\rm L_1$ and $\rm L_2$, thus completing the proof

Proof of Closure under Concatenation

- Assume that L₁ and L₂ are generated by the context-free grammars
 G₁ = (V₁, T₁, S₁, P₁) and G₂ = (V₂, T₂, S₂, P₂)
- Without loss of generality, assume that the sets $\rm V_1$ and $\rm V_2$ are disjoint
- Create a new variable S_4 which is not in $\mathsf{V}_1 \cup \mathsf{V}_2$
- Construct a new grammar $G_4 = (V_4, T_4, S_4, P_4)$ so that
 - $V_4 = V_1 \cup V_2 \cup \{S_4\}$
 - $T_4 = T_1 \cup T_2$
 - $P_4 = P_1 \cup P_2$
- Add to P_4 a production that allows the new start symbol to derive the concatenation of the start symbols for L_1 and L_2
 - $S_4 \rightarrow S_1 S_2$
- Clearly, G_4 is context-free and generates the concatenation of L_1 and L_2 , thus completing the proof

Proof of Closure under Star-Closure

- Assume that L₁ is generated by the context-free grammars G₁ = (V₁, T₁, S₁, P₁)
- Create a new variable S_5 which is not in V_1
- Construct a new grammar $G_5 = (V_5, T_5, S_5, P_5)$ so that
 - $V_5 = V_1 \cup \{S_5\}$
 - $T_5 = T_1$
 - $P_5 = P_1$
- Add to P₅ a production that allows the new start symbol S₅ to derive the repetition of the start symbol for L₁ any number of times
 - $S_5 \rightarrow S_1 S_5 \mid \lambda$
- Clearly, G_5 is context-free and generates the star-closure of L_1 , thus completing the proof

No Closure under Intersection

- Unlike regular languages, the intersection of two context-free languages L₁ and L₂ does not necessarily produce a contextfree language
- As a counterexample, consider the context-free languages

 $L_{1} = \{ a^{n}b^{n}c^{m} : n \ge 0, m \ge 0 \}$ $L_{2} = \{ a^{n}b^{m}c^{m} : n \ge 0, m \ge 0 \}$

• However, the intersection L₁ and L₂ is the language

 $L_3 = \{ a^n b^n c^n : n \ge 0 \}$

 L₃ can be shown not be context-free by applying the pumping lemma for context-free languages

No Closure under Complementation

- The complement of a context-free language L₁ does not necessarily produce a context-free language
- The proof is by contradiction: given two context-free languages L₁ and L₂, assume that their complements are also context-free
- By Theorem 8.3, the union of the complements must also produce a context-free language L_3 ($L_3 = \overline{L_1} \cup \overline{L_2}$)
- Using our assumption, the complement of $\rm L_3$ is also context-free.
- However, using the set identity below, we conclude that the complement of L_3 is the intersection of L_1 and L_2 , which has been shown not to be context-free, thus contradicting our assumption.

$$\overline{L_3} = \overline{\overline{L_1}} \cup \overline{L_2} = L_1 \cap L_2$$